当前位置: 首页>>代码示例>>Python>>正文


Python losses.binary_crossentropy方法代码示例

本文整理汇总了Python中tensorflow.keras.losses.binary_crossentropy方法的典型用法代码示例。如果您正苦于以下问题:Python losses.binary_crossentropy方法的具体用法?Python losses.binary_crossentropy怎么用?Python losses.binary_crossentropy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras.losses的用法示例。


在下文中一共展示了losses.binary_crossentropy方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: bce_jaccard_loss

# 需要导入模块: from tensorflow.keras import losses [as 别名]
# 或者: from tensorflow.keras.losses import binary_crossentropy [as 别名]
def bce_jaccard_loss(gt, pr, bce_weight=1., smooth=SMOOTH, per_image=True):
    r"""Sum of binary crossentropy and jaccard losses:
    
    .. math:: L(A, B) = bce_weight * binary_crossentropy(A, B) + jaccard_loss(A, B)
    
    Args:
        gt: ground truth 4D keras tensor (B, H, W, C)
        pr: prediction 4D keras tensor (B, H, W, C)
        class_weights: 1. or list of class weights for jaccard loss, len(weights) = C
        smooth: value to avoid division by zero
        per_image: if ``True``, jaccard loss is calculated as mean over images in batch (B),
            else over whole batch (only for jaccard loss)

    Returns:
        loss
    
    """
    bce = K.mean(binary_crossentropy(gt, pr))
    loss = bce_weight * bce + jaccard_loss(gt, pr, smooth=smooth, per_image=per_image)
    return loss 
开发者ID:1044197988,项目名称:TF.Keras-Commonly-used-models,代码行数:22,代码来源:losses.py

示例2: bce_dice_loss

# 需要导入模块: from tensorflow.keras import losses [as 别名]
# 或者: from tensorflow.keras.losses import binary_crossentropy [as 别名]
def bce_dice_loss(gt, pr, bce_weight=1., smooth=SMOOTH, per_image=True, beta=1.):
    r"""Sum of binary crossentropy and dice losses:
    
    .. math:: L(A, B) = bce_weight * binary_crossentropy(A, B) + dice_loss(A, B)
    
    Args:
        gt: ground truth 4D keras tensor (B, H, W, C)
        pr: prediction 4D keras tensor (B, H, W, C)
        class_weights: 1. or list of class weights for dice loss, len(weights) = C 
        smooth: value to avoid division by zero
        per_image: if ``True``, dice loss is calculated as mean over images in batch (B),
            else over whole batch
        beta: coefficient for precision recall balance

    Returns:
        loss
    
    """
    bce = K.mean(binary_crossentropy(gt, pr))
    loss = bce_weight * bce + dice_loss(gt, pr, smooth=smooth, per_image=per_image, beta=beta)
    return loss 
开发者ID:1044197988,项目名称:TF.Keras-Commonly-used-models,代码行数:23,代码来源:losses.py

示例3: variational_free_energy_loss

# 需要导入模块: from tensorflow.keras import losses [as 别名]
# 或者: from tensorflow.keras.losses import binary_crossentropy [as 别名]
def variational_free_energy_loss(model, scale_factor, kl_alpha):
    """Defines variational free energy loss.

    Sum of KL divergence (supplied by tfp) and binary cross-entropy.
    """

    # KL Divergence should be applied once per epoch only, so
    # scale_factor should be num_samples / batch_size.
    kl = sum(model.losses) / scale_factor

    def loss(y_true, y_pred):
        bce = binary_crossentropy(y_true, y_pred)
        return bce + K.get_value(kl_alpha) * kl

    return loss 
开发者ID:sandialabs,项目名称:bcnn,代码行数:17,代码来源:utils.py

示例4: loss

# 需要导入模块: from tensorflow.keras import losses [as 别名]
# 或者: from tensorflow.keras.losses import binary_crossentropy [as 别名]
def loss(y_true, y_pred):
    def dice_coefficient(y_true, y_pred):
        numerator = 2 * tf.reduce_sum(y_true * y_pred, axis=-1)
        denominator = tf.reduce_sum(y_true + y_pred, axis=-1)

        return numerator / (denominator + epsilon())

    return binary_crossentropy(y_true, y_pred) - tf.math.log(dice_coefficient(y_true, y_pred) + epsilon()) 
开发者ID:lars76,项目名称:object-localization,代码行数:10,代码来源:train.py

示例5: compile

# 需要导入模块: from tensorflow.keras import losses [as 别名]
# 或者: from tensorflow.keras.losses import binary_crossentropy [as 别名]
def compile(self) -> None:
        optimizer = Adam(lr=self.learning_rate)
        loss = losses.binary_crossentropy
        self.model.compile(loss=loss, optimizer=optimizer) 
开发者ID:deepmipt,项目名称:DeepPavlov,代码行数:6,代码来源:keras_siamese_model.py

示例6: compile

# 需要导入模块: from tensorflow.keras import losses [as 别名]
# 或者: from tensorflow.keras.losses import binary_crossentropy [as 别名]
def compile(self) -> None:
        optimizer = Adam(lr=self.learning_rate)
        if self.triplet_mode:
            loss = self._triplet_loss
        else:
            loss = losses.binary_crossentropy
        self.model.compile(loss=loss, optimizer=optimizer)
        self.score_model = self.create_score_model() 
开发者ID:deepmipt,项目名称:DeepPavlov,代码行数:10,代码来源:bilstm_siamese_network.py

示例7: bce_dice_loss

# 需要导入模块: from tensorflow.keras import losses [as 别名]
# 或者: from tensorflow.keras.losses import binary_crossentropy [as 别名]
def bce_dice_loss(y_true, y_pred):
    loss = binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred)
    return loss


# Focal Tversky loss, brought to you by:  https://github.com/nabsabraham/focal-tversky-unet 
开发者ID:1044197988,项目名称:TF.Keras-Commonly-used-models,代码行数:8,代码来源:Focal_Tversky_loss.py

示例8: YoloLoss

# 需要导入模块: from tensorflow.keras import losses [as 别名]
# 或者: from tensorflow.keras.losses import binary_crossentropy [as 别名]
def YoloLoss(anchors, num_classes=10, ignore_thresh=0.5):
    def yolo_loss(y_true, y_pred):
        # 1. transform all pred outputs
        # y_pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...cls))
        pred_box, pred_obj, pred_class, pred_xywh = yolo_boxes(y_pred, anchors, num_classes)
        pred_xy = pred_xywh[..., 0:2]
        pred_wh = pred_xywh[..., 2:4]

        # 2. transform all true outputs
        # y_true: (batch_size, grid, grid, anchors, (x1, y1, x2, y2, obj, cls))
        true_box, true_obj, true_class_idx = tf.split(y_true, (4, 1, 1), axis=-1)
        true_xy = (true_box[..., 0:2] + true_box[..., 2:4]) / 2.
        true_wh = true_box[..., 2:4] - true_box[..., 0:2]

        # give higher weights to small boxes
        box_loss_scale = 2 - true_wh[..., 0] * true_wh[..., 1]

        # 3. inverting the pred box equations
        grid_size = tf.shape(y_pred)[1:3][::-1]

        grid_y, grid_x = tf.shape(y_pred)[1], tf.shape(y_pred)[2]
        grid = tf.meshgrid(tf.range(grid_x), tf.range(grid_y))

        grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)
        true_xy = true_xy * tf.cast(grid_size, tf.float32) - tf.cast(grid, tf.float32)
        true_wh = tf.math.log(true_wh / anchors)
        true_wh = tf.where(tf.math.is_inf(true_wh), tf.zeros_like(true_wh), true_wh)
        # 4. calculate all masks
        obj_mask = tf.squeeze(true_obj, -1)
        # ignore false positive when iou is over threshold
        true_box_flat = tf.boolean_mask(true_box, tf.cast(obj_mask, tf.bool))
        best_iou = tf.reduce_max(broadcast_iou(pred_box, true_box_flat), axis=-1)
        ignore_mask = tf.cast(best_iou < ignore_thresh, tf.float32)
        # 5. calculate all losses
        xy_loss = obj_mask * box_loss_scale * tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1)
        wh_loss = obj_mask * box_loss_scale * tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1)
        obj_loss = binary_crossentropy(true_obj, pred_obj)
        obj_loss = obj_mask * obj_loss + (1 - obj_mask) * ignore_mask * obj_loss
        class_loss = obj_mask * sparse_categorical_crossentropy(true_class_idx, pred_class)
        # 6. sum over (batch, gridx, gridy, anchors) => (batch, 1)
        xy_loss = tf.reduce_sum(xy_loss, axis=(1, 2, 3))
        wh_loss = tf.reduce_sum(wh_loss, axis=(1, 2, 3))
        obj_loss = tf.reduce_sum(obj_loss, axis=(1, 2, 3))
        class_loss = tf.reduce_sum(class_loss, axis=(1, 2, 3))
        loss = xy_loss + wh_loss + obj_loss + class_loss
        return loss

    return yolo_loss 
开发者ID:akkaze,项目名称:tf2-yolo3,代码行数:50,代码来源:models.py

示例9: detection_loss

# 需要导入模块: from tensorflow.keras import losses [as 别名]
# 或者: from tensorflow.keras.losses import binary_crossentropy [as 别名]
def detection_loss():
    def get_box_highest_percentage(arr):
        shape = tf.shape(arr)

        reshaped = tf.reshape(arr, (shape[0], tf.reduce_prod(shape[1:-1]), -1))

        # returns array containing the index of the highest percentage of each batch
        # where 0 <= index <= height * width
        max_prob_ind = tf.argmax(reshaped[...,-1], axis=-1, output_type=tf.int32)

        # turn indices (batch, y * x) into (batch, y, x)
        # returns (3, batch) tensor
        unraveled = tf.unravel_index(max_prob_ind, shape[:-1])

        # turn tensor into (batch, 3) and keep only (y, x)
        unraveled = tf.transpose(unraveled)[:,1:]
        y, x = unraveled[...,0], unraveled[...,1]

        # stack indices and create (batch, 5) tensor which
        # contains height, width, offset_y, offset_x, percentage
        indices = tf.stack([tf.range(shape[0]), y, x], axis=-1)
        box = tf.gather_nd(arr, indices)

        y, x = tf.cast(y, tf.float32), tf.cast(x, tf.float32)

        # transform box to (y + offset_y, x + offset_x, 7 * height, 7 * width, obj)
        # output is (batch, 5)
        out = tf.stack([y + box[...,2], x + box[...,3],
                        GRID_SIZE * box[...,0], GRID_SIZE * box[...,1],
                        box[...,-1]], axis=-1)

        return out

    def loss(y_true, y_pred):
        # get the box with the highest percentage in each image
        true_box = get_box_highest_percentage(y_true)
        pred_box = get_box_highest_percentage(y_pred)

        # object loss
        obj_loss = binary_crossentropy(y_true[...,4:5], y_pred[...,4:5])

        # mse with the boxes that have the highest percentage
        box_loss = tf.reduce_sum(tf.math.squared_difference(true_box[...,:-1], pred_box[...,:-1]))

        return tf.reduce_sum(obj_loss) + box_loss

    return loss 
开发者ID:lars76,项目名称:object-localization,代码行数:49,代码来源:train.py

示例10: k_weighted_bce

# 需要导入模块: from tensorflow.keras import losses [as 别名]
# 或者: from tensorflow.keras.losses import binary_crossentropy [as 别名]
def k_weighted_bce(y_true, y_pred, weight):
    """Weighted binary cross-entropy for Keras.

    Arguments:
    ----------
    y_true : ``tf.Tensor``
        passed silently by Keras during model training.
    y_pred : ``tf.Tensor``
        passed silently by Keras during model training.
    weight : :class:`float` or :class:`int`
        Weight to assign to mask foreground pixels. Use values
        >1 to over-weight foreground or 0<value<1 to under-weight foreground.
        weight=1 is identical to vanilla binary cross-entropy.

    Returns:
    --------
    The binary cross-entropy loss function output multiplied by a weighting
    mask.

    Usage:
    ------
    Because Keras doesn't make it easy to implement loss functions that
    take arguments beyond `y_true` and `y_pred `, this function's arguments
    must be partially defined before passing it into your `model.compile`
    command. See example below, modified from ternausnet.py::

        model = Model(input=inputs, output=output_layer) # defined in ternausnet.py

        loss_func = partial(weighted_bce, weight=loss_weight)
        loss_func = update_wrapper(loss_func, weighted_bce)

        model.compile(optimizer=Adam(), loss=loss_func)

    If you wish to save and re-load a model which used this loss function,
    you must pass the loss function as a custom object::

        model.save('path_to_your_model.hdf5')
        wbce_loss = partial(weighted_bce, weight=loss_weight)
        wbce_loss = update_wrapper(wbce_loss, weighted_bce)
        reloaded_model = keras.models.load_model(
            'path_to_your_model.hdf5', custom_objects={'weighted_bce': wbce_loss}
            )

    """
    if weight == 1:  # identical to vanilla bce
        return K.binary_crossentropy(y_pred, y_true)
    weight_mask = K.ones_like(y_true)  # initialize weight mask
    class_two = K.equal(y_true, weight_mask)  # identify foreground pixels
    class_two = K.cast(class_two, 'float32')
    if weight < 1:
        class_two = class_two*(1-weight)
        final_mask = weight_mask - class_two  # foreground pixels weighted
    elif weight > 1:
        class_two = class_two*(weight-1)
        final_mask = weight_mask + class_two  # foreground pixels weighted
    return K.binary_crossentropy(y_pred, y_true) * final_mask 
开发者ID:CosmiQ,项目名称:solaris,代码行数:58,代码来源:_keras_losses.py

示例11: k_layered_weighted_bce

# 需要导入模块: from tensorflow.keras import losses [as 别名]
# 或者: from tensorflow.keras.losses import binary_crossentropy [as 别名]
def k_layered_weighted_bce(y_true, y_pred, weights):
    """Binary cross-entropy function with different weights for mask channels.

    Arguments:
    ----------
    y_true (tensor): passed silently by Keras during model training.
    y_pred (tensor): passed silently by Keras during model training.
    weights (list-like): Weights to assign to mask foreground pixels for each
        channel in the 3rd axis of the mask.

    Returns:
    --------
    The binary cross-entropy loss function output multiplied by a weighting
    mask.

    Usage:
    ------
    See implementation instructions for `weighted_bce`.

    This loss function is intended to allow different weighting of different
    segmentation outputs - for example, if a model outputs a 3D image mask,
    where the first channel corresponds to foreground objects and the second
    channel corresponds to object edges. `weights` must be a list of length
    equal to the depth of the output mask. The output mask's "z-axis"
    corresponding to the mask channel must be the third axis in the output
    array.

    """
    weight_mask = K.ones_like(y_true)
    submask_list = []
    for i in range(len(weights)):
        class_two = K.equal(y_true[:, :, :, i], weight_mask[:, :, :, i])
        class_two = K.cast(class_two, 'float32')
        if weights[i] < 1:
            class_two = class_two*(1-weights[i])
            layer_mask = weight_mask[:, :, :, i] - class_two
        elif weights[i] > 1:
            class_two = class_two*(weights[i]-1)
            layer_mask = weight_mask[:, :, :, i] + class_two
        else:
            layer_mask = weight_mask[:, :, :, i]
        submask_list.append(layer_mask)
    final_mask = K.stack(submask_list, axis=-1)
    return K.binary_crossentropy(y_pred, y_true) * final_mask 
开发者ID:CosmiQ,项目名称:solaris,代码行数:46,代码来源:_keras_losses.py


注:本文中的tensorflow.keras.losses.binary_crossentropy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。