当前位置: 首页>>代码示例>>Python>>正文


Python keras.layers方法代码示例

本文整理汇总了Python中tensorflow.keras.layers方法的典型用法代码示例。如果您正苦于以下问题:Python keras.layers方法的具体用法?Python keras.layers怎么用?Python keras.layers使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras的用法示例。


在下文中一共展示了keras.layers方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: format_layer_idx

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def format_layer_idx(self, idx):
        """Pad the layer index with the appropriate amount of zeros.

        The number of zeros used for padding is determined by the maximum index
        (i.e. the number of layers in the network).

        Parameters
        ----------

        idx: int
            Layer index.

        Returns
        -------

        num_str: str
            Zero-padded layer index.
        """

        max_idx = len(self.input_model.layers)
        return str(idx).zfill(len(str(max_idx))) 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:23,代码来源:utils.py

示例2: has_weights

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def has_weights(layer):
    """Return ``True`` if layer has weights.

    Parameters
    ----------

    layer : keras.layers.Layer
        Keras layer

    Returns
    -------

    : bool
        ``True`` if layer has weights.
    """

    return len(layer.weights) 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:19,代码来源:utils.py

示例3: get_inbound_layers_without_params

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def get_inbound_layers_without_params(layer):
    """Return inbound layers.

    Parameters
    ----------

    layer: Keras.layers
        A Keras layer.

    Returns
    -------

    : list[Keras.layers]
        List of inbound layers.
    """

    return [layer for layer in get_inbound_layers(layer)
            if not has_weights(layer)] 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:20,代码来源:utils.py

示例4: get_outbound_layers

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def get_outbound_layers(layer):
    """Return outbound layers.

    Parameters
    ----------

    layer: Keras.layers
        A Keras layer.

    Returns
    -------

    : list[Keras.layers]
        List of outbound layers.
    """

    try:
        # noinspection PyProtectedMember
        outbound_nodes = layer._outbound_nodes
    except AttributeError:  # For Keras backward-compatibility.
        outbound_nodes = layer.outbound_nodes
    return [on.outbound_layer for on in outbound_nodes] 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:24,代码来源:utils.py

示例5: get_outbound_activation

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def get_outbound_activation(layer):
    """
    Iterate over 2 outbound layers to find an activation layer. If there is no
    activation layer, take the activation of the current layer.

    Parameters
    ----------

    layer: Union[keras.layers.Conv2D, keras.layers.Dense]
        Layer

    Returns
    -------

    activation: str
        Name of outbound activation type.
    """

    activation = layer.activation.__name__
    outbound = layer
    for _ in range(2):
        outbound = get_outbound_layers(outbound)
        if len(outbound) == 1 and get_type(outbound[0]) == 'Activation':
            activation = outbound[0].activation.__name__
    return activation 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:27,代码来源:utils.py

示例6: transition_block

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def transition_block(x, reduction, name, pool=True):
    """A transition block.
    # Arguments
        x: input tensor.
        reduction: float, compression rate at transition layers.
        name: string, block label.
    # Returns
        output tensor for the block.
    """
    bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name=name + "_bn")(x)
    x = layers.Activation("relu", name=name + "_relu")(x)
    x = layers.Conv2D(
        int(backend.int_shape(x)[bn_axis] * reduction),
        1,
        use_bias=False,
        name=name + "_conv",
    )(x)
    if pool:
        x = layers.AveragePooling2D(2, strides=2, name=name + "_pool")(x)
    return x 
开发者ID:jgraving,项目名称:DeepPoseKit,代码行数:23,代码来源:imagenet_densenet.py

示例7: inference_network

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def inference_network(x, latent_dim, hidden_size):
  """Construct an inference network parametrizing a Gaussian.

  Args:
    x: A batch of MNIST digits.
    latent_dim: The latent dimensionality.
    hidden_size: The size of the neural net hidden layers.

  Returns:
    mu: Mean parameters for the variational family Normal
    sigma: Standard deviation parameters for the variational family Normal
  """
  inference_net = tfk.Sequential([
    tfkl.Flatten(),
    tfkl.Dense(hidden_size, activation=tf.nn.relu),
    tfkl.Dense(hidden_size, activation=tf.nn.relu),
    tfkl.Dense(latent_dim * 2, activation=None)
    ])
  gaussian_params = inference_net(x)
  # The mean parameter is unconstrained
  mu = gaussian_params[:, :latent_dim]
  # The standard deviation must be positive. Parametrize with a softplus
  sigma = tf.nn.softplus(gaussian_params[:, latent_dim:])
  return mu, sigma 
开发者ID:altosaar,项目名称:variational-autoencoder,代码行数:26,代码来源:train_variational_autoencoder_tensorflow.py

示例8: get_kwargs

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def get_kwargs():
        return {
            'backend': tfkeras.backend,
            'layers': tfkeras.layers,
            'models': tfkeras.models,
            'utils': tfkeras.utils,
        } 
开发者ID:qubvel,项目名称:classification_models,代码行数:9,代码来源:tfkeras.py

示例9: _layer_from_dict

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def _layer_from_dict(layer_type: str, *args, **kwargs) -> Layer:
        from tensorflow.keras import layers
        cls = getattr(layers, layer_type)
        assert issubclass(cls, Layer)
        return cls(*args, **kwargs) 
开发者ID:BlackLight,项目名称:platypush,代码行数:7,代码来源:__init__.py

示例10: test_replace_imports

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def test_replace_imports():
    python_code = """
    import keras
    from keras import backend as K
    import os
    import keras_contrib
    import keras_contrib.layers as lay
    import keras.layers
    from keras.layers import Dense

    if K.backend() == 'tensorflow':
        import tensorflow as tf
        function = tf.max
    """

    expected_code = """
    from tensorflow import keras
    from tensorflow.keras import backend as K
    import os
    import keras_contrib
    import keras_contrib.layers as lay
    import tensorflow.keras.layers
    from tensorflow.keras.layers import Dense

    if K.backend() == 'tensorflow':
        import tensorflow as tf
        function = tf.max
    """

    code_with_replacement = replace_imports_in_text(python_code, False)
    assert expected_code == code_with_replacement
    assert python_code == replace_imports_in_text(code_with_replacement, True) 
开发者ID:keras-team,项目名称:keras-contrib,代码行数:34,代码来源:convert_to_tf_keras.py

示例11: get_layer_iterable

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def get_layer_iterable(self):
        """Get an iterable over the layers of the network.

        Returns
        -------

        layers: list
        """

        pass 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:12,代码来源:utils.py

示例12: get_inbound_layers_with_parameters

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def get_inbound_layers_with_parameters(self, layer):
        """Iterate until inbound layers are found that have parameters.

        Parameters
        ----------

        layer:
            Layer

        Returns
        -------

        : list
            List of inbound layers.
        """

        inbound = layer
        while True:
            inbound = self.get_inbound_layers(inbound)
            if len(inbound) == 1:
                inbound = inbound[0]
                if self.has_weights(inbound):
                    return [inbound]
            else:
                result = []
                for inb in inbound:
                    if self.has_weights(inb):
                        result.append(inb)
                    else:
                        result += self.get_inbound_layers_with_parameters(inb)
                return result 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:33,代码来源:utils.py

示例13: get_inbound_names

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def get_inbound_names(self, layer, name_map):
        """Get names of inbound layers.

        Parameters
        ----------

        layer:
            Layer
        name_map: dict
            Maps the name of a layer to the `id` of the layer object.

        Returns
        -------

        : list
            The names of inbound layers.

        """

        inbound = self.get_inbound_layers(layer)
        for ib in range(len(inbound)):
            for _ in range(len(self.layers_to_skip)):
                if self.get_type(inbound[ib]) in self.layers_to_skip:
                    inbound[ib] = self.get_inbound_layers(inbound[ib])[0]
                else:
                    break
        if len(self._layer_list) == 0 or \
                any([self.get_type(inb) == 'InputLayer' for inb in inbound]):
            return ['input']
        else:
            inb_idxs = [name_map[str(id(inb))] for inb in inbound]
            return [self._layer_list[i]['name'] for i in inb_idxs] 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:34,代码来源:utils.py

示例14: get_inbound_layers

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def get_inbound_layers(self, layer):
        """Get inbound layers of ``layer``.

        Returns
        -------

        inbound: Sequence
        """

        pass 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:12,代码来源:utils.py

示例15: absorb_bn_parameters

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import layers [as 别名]
def absorb_bn_parameters(weight, bias, mean, var_eps_sqrt_inv, gamma, beta,
                         axis, image_data_format, is_depthwise=False):
    """
    Absorb the parameters of a batch-normalization layer into the previous
    layer.
    """

    axis = weight.ndim + axis if axis < 0 else axis

    print("Using BatchNorm axis {}.".format(axis))

    # Map batch norm axis from layer dimension space to kernel dimension space.
    # Assumes that kernels are shaped like
    # [height, width, num_input_channels, num_output_channels],
    # and layers like [batch_size, channels, height, width] or
    # [batch_size, height, width, channels].
    if weight.ndim == 4:

        channel_axis = 2 if is_depthwise else 3

        if image_data_format == 'channels_first':
            layer2kernel_axes_map = [None, channel_axis, 0, 1]
        else:
            layer2kernel_axes_map = [None, 0, 1, channel_axis]

        axis = layer2kernel_axes_map[axis]

    broadcast_shape = [1] * weight.ndim
    broadcast_shape[axis] = weight.shape[axis]
    var_eps_sqrt_inv = np.reshape(var_eps_sqrt_inv, broadcast_shape)
    gamma = np.reshape(gamma, broadcast_shape)
    beta = np.reshape(beta, broadcast_shape)
    bias = np.reshape(bias, broadcast_shape)
    mean = np.reshape(mean, broadcast_shape)
    bias_bn = np.ravel(beta + (bias - mean) * gamma * var_eps_sqrt_inv)
    weight_bn = weight * gamma * var_eps_sqrt_inv

    return weight_bn, bias_bn 
开发者ID:NeuromorphicProcessorProject,项目名称:snn_toolbox,代码行数:40,代码来源:utils.py


注:本文中的tensorflow.keras.layers方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。