当前位置: 首页>>代码示例>>Python>>正文


Python layers.UpSampling2D方法代码示例

本文整理汇总了Python中tensorflow.keras.layers.UpSampling2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.UpSampling2D方法的具体用法?Python layers.UpSampling2D怎么用?Python layers.UpSampling2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.UpSampling2D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: up_stage

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def up_stage(inputs, skip, filters, kernel_size=3,
             activation="relu", padding="SAME"):
    up = UpSampling2D()(inputs)
    up = Conv2D(filters, 2, activation=activation, padding=padding)(up)
    up = GroupNormalization()(up)

    merge = concatenate([skip, up])
    merge = GroupNormalization()(merge)

    conv = Conv2D(filters, kernel_size,
                  activation=activation, padding=padding)(merge)
    conv = GroupNormalization()(conv)
    conv = Conv2D(filters, kernel_size,
                  activation=activation, padding=padding)(conv)
    conv = GroupNormalization()(conv)
    conv = SpatialDropout2D(0.5)(conv, training=True)

    return conv 
开发者ID:sandialabs,项目名称:bcnn,代码行数:20,代码来源:dropout_unet.py

示例2: up_stage

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def up_stage(inputs, skip, filters, prior_fn, kernel_size=3,
             activation="relu", padding="SAME"):
    up = UpSampling2D()(inputs)
    up = tfp.layers.Convolution2DFlipout(filters, 2,
                                         activation=activation,
                                         padding=padding,
                                         kernel_prior_fn=prior_fn)(up)
    up = GroupNormalization()(up)

    merge = concatenate([skip, up])
    merge = GroupNormalization()(merge)

    conv = tfp.layers.Convolution2DFlipout(filters, kernel_size,
                                           activation=activation,
                                           padding=padding,
                                           kernel_prior_fn=prior_fn)(merge)
    conv = GroupNormalization()(conv)
    conv = tfp.layers.Convolution2DFlipout(filters, kernel_size,
                                           activation=activation,
                                           padding=padding,
                                           kernel_prior_fn=prior_fn)(conv)
    conv = GroupNormalization()(conv)

    return conv 
开发者ID:sandialabs,项目名称:bcnn,代码行数:26,代码来源:bayesian_unet.py

示例3: __init__

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def __init__(self,
                 in_channels,
                 out_channels,
                 scale_factor,
                 data_format="channels_last",
                 **kwargs):
        super(UpSamplingBlock, self).__init__(**kwargs)
        self.scale_factor = scale_factor

        self.conv = conv1x1_block(
            in_channels=in_channels,
            out_channels=out_channels,
            strides=1,
            activation=None,
            data_format=data_format,
            name="conv")
        self.upsample = nn.UpSampling2D(
            size=scale_factor,
            data_format=data_format,
            interpolation="nearest",
            name="upsample") 
开发者ID:osmr,项目名称:imgclsmob,代码行数:23,代码来源:hrnet.py

示例4: __init__

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def __init__(self,
                 in_channels,
                 out_channels,
                 groups=1,
                 ratio=2,
                 data_format="channels_last",
                 **kwargs):
        super(AirBlock, self).__init__(**kwargs)
        assert (out_channels % ratio == 0)
        mid_channels = out_channels // ratio

        self.conv1 = conv1x1_block(
            in_channels=in_channels,
            out_channels=mid_channels,
            data_format=data_format,
            name="conv1")
        self.pool = MaxPool2d(
            pool_size=3,
            strides=2,
            padding=1,
            data_format=data_format,
            name="pool")
        self.conv2 = conv3x3_block(
            in_channels=mid_channels,
            out_channels=mid_channels,
            groups=groups,
            data_format=data_format,
            name="conv2")
        self.conv3 = conv1x1_block(
            in_channels=mid_channels,
            out_channels=out_channels,
            activation=None,
            data_format=data_format,
            name="conv3")
        self.sigmoid = tf.nn.sigmoid
        self.upsample = nn.UpSampling2D(
            size=(2, 2),
            data_format=data_format,
            interpolation="bilinear",
            name="upsample") 
开发者ID:osmr,项目名称:imgclsmob,代码行数:42,代码来源:airnet.py

示例5: create_model

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def create_model(trainable=True):
    model = MobileNetV2(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, alpha=ALPHA, weights="imagenet")

    for layer in model.layers:
        layer.trainable = trainable

    block1 = model.get_layer("block_5_add").output
    block2 = model.get_layer("block_12_add").output
    block3 = model.get_layer("block_15_add").output

    blocks = [block2, block1]

    x = block3
    for block in blocks:
        x = UpSampling2D()(x)

        x = Conv2D(256, kernel_size=3, padding="same", strides=1)(x)
        x = BatchNormalization()(x)
        x = Activation("relu")(x)

        x = Concatenate()([x, block])

        x = Conv2D(256, kernel_size=3, padding="same", strides=1)(x)
        x = BatchNormalization()(x)
        x = Activation("relu")(x)

    x = Conv2D(1, kernel_size=1, activation="sigmoid")(x)

    return Model(inputs=model.input, outputs=x) 
开发者ID:lars76,项目名称:object-localization,代码行数:31,代码来源:train.py

示例6: _hourglass_module

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def _hourglass_module(input, stage_index, number_of_keypoints):
    if stage_index == 0:
        return _inverted_bottleneck(input, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3), []
    else:
        # down sample
        x = layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='SAME')(input)

        # block front
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)

        stage_index -= 1

        # block middle
        x, middle_layers = _hourglass_module(x, stage_index=stage_index, number_of_keypoints=number_of_keypoints)

        # block back
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=number_of_keypoints, is_subsample=False, kernel_size=3)

        # up sample
        upsampling_size = (2, 2)  # (x.shape[1] * 2, x.shape[2] * 2)
        x = layers.UpSampling2D(size=upsampling_size, interpolation='bilinear')(x)
        upsampling_layer = x

        # jump layer
        x = _inverted_bottleneck(input, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
        x = _inverted_bottleneck(x, up_channel_rate=6, channels=number_of_keypoints, is_subsample=False, kernel_size=3)
        jump_branch_layer = x

        # add
        x = upsampling_layer + jump_branch_layer

        middle_layers.append(x)

        return x, middle_layers 
开发者ID:tucan9389,项目名称:tf2-mobile-pose-estimation,代码行数:43,代码来源:mv2_hourglass.py

示例7: __init__

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def __init__(self, compression_factor=0.5, **kwargs):
        # super(TransitionDown, self).__init__(self, **kwargs)
        self.concat = Concatenate()
        self.compression_factor = compression_factor

        self.upsample = (
            SubPixelUpscaling()
        )  # layers.UpSampling2D(interpolation='bilinear') 
开发者ID:jgraving,项目名称:DeepPoseKit,代码行数:10,代码来源:densenet.py

示例8: upsample_module

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def upsample_module(inputs, out1, out2):
    left, right = inputs

    xl = res_layer0(left,out2)
    xl = res_layer0(xl, out2)

    xr = convblock(right, out1, 3)
    xr = convblock(xr, out2, 3)
    xr = layers.UpSampling2D()(xr)
    out = layers.Add()([xl, xr])
    return out 
开发者ID:1044197988,项目名称:Centernet-Tensorflow2.0,代码行数:13,代码来源:module.py

示例9: connect_left_right

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def connect_left_right(left, right, num_channels, num_channels_next, name):
  # left: 2 residual modules
  left = residual(left, num_channels_next, name=name + 'skip.0')
  left = residual(left, num_channels_next, name=name + 'skip.1')

  # up: 2 times residual & nearest neighbour
  out = residual(right, num_channels, name=name + 'out.0')
  out = residual(out, num_channels_next, name=name + 'out.1')
  out = UpSampling2D(name=name + 'out.upsampleNN')(out)
  out = Add(name=name + 'out.add')([left, out])
  return out 
开发者ID:1044197988,项目名称:Centernet-Tensorflow2.0,代码行数:13,代码来源:hourglass.py

示例10: __init__

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def __init__(self, filters):
        super(up_conv, self).__init__()
        self.up = Sequential([
            UpSampling2D(),
            Conv2D(filters, kernel_size=(3,3), strides=1, padding='same'),
            BatchNormalization(),
            Activation('relu')
        ]) 
开发者ID:1044197988,项目名称:TF.Keras-Commonly-used-models,代码行数:10,代码来源:Unet_family.py

示例11: fuse_layers

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def fuse_layers(x, channels, multi_scale_output=True):
    out = []

    for i in range(len(channels) if multi_scale_output else 1):
        residual = x[i]
        for j in range(len(channels)):
            if j > i:
                y = conv(x[j], channels[i], 1, padding_='valid')
                y = BatchNormalization(epsilon=1e-5, momentum=0.1)(y)
                y = UpSampling2D(size=2 ** (j - i))(y)
                residual = Add()([residual, y])
            elif j < i:
                y = x[j]
                for k in range(i - j):
                    if k == i - j - 1:
                        y = conv(y, channels[i], 3, strides_=2)
                        y = BatchNormalization(epsilon=1e-5, momentum=0.1)(y)
                    else:
                        y = conv(y, channels[j], 3, strides_=2)
                        y = BatchNormalization(epsilon=1e-5, momentum=0.1)(y)
                        y = Activation('relu')(y)
                residual = Add()([residual, y])

        residual = Activation('relu')(residual)
        out.append(residual)

    return out 
开发者ID:1044197988,项目名称:TF.Keras-Commonly-used-models,代码行数:29,代码来源:HRNet.py

示例12: MultiResolutionFusion

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def MultiResolutionFusion(high_inputs=None,low_inputs=None,n_filters=256,name=''):
    """
    Fuse together all path inputs. This block first applies convolutions
    for input adaptation, which generate feature maps of the same feature dimension 
    (the smallest one among the inputs), and then up-samples all (smaller) feature maps to
    the largest resolution of the inputs. Finally, all features maps are fused by summation.
    Arguments:
      high_inputs: The input tensors that have the higher resolution
      low_inputs: The input tensors that have the lower resolution
      n_filters: Number of output feature maps for each conv
    Returns:
      Fused feature maps at higher resolution
    
    """
    
    if low_inputs is None: # RefineNet block 4
        return high_inputs

    else:
        conv_low = Conv2D(n_filters, 3, padding='same', name=name+'conv_lo', kernel_initializer=kern_init, kernel_regularizer=kern_reg)(low_inputs)
        conv_low = BatchNormalization()(conv_low)
        conv_high = Conv2D(n_filters, 3, padding='same', name=name+'conv_hi', kernel_initializer=kern_init, kernel_regularizer=kern_reg)(high_inputs)
        conv_high = BatchNormalization()(conv_high)
        
        conv_low_up = UpSampling2D(size=2, interpolation='bilinear', name=name+'up')(conv_low)
        
        return Add(name=name+'sum')([conv_low_up, conv_high]) 
开发者ID:1044197988,项目名称:TF.Keras-Commonly-used-models,代码行数:29,代码来源:Refinenet.py

示例13: build_fcn

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def build_fcn(input_shape,
              backbone,
              n_classes=4):
    """Helper function to build an FCN model.
        
    Arguments:
        backbone (Model): A backbone network
            such as ResNetv2 or v1
        n_classes (int): Number of object classes
            including background.
    """

    inputs = Input(shape=input_shape)
    features = backbone(inputs)

    main_feature = features[0]
    features = features[1:]
    out_features = [main_feature]
    feature_size = 8
    size = 2
    # other half of the features pyramid
    # including upsampling to restore the
    # feature maps to the dimensions
    # equal to 1/4 the image size
    for feature in features:
        postfix = "fcn_" + str(feature_size)
        feature = conv_layer(feature,
                             filters=256,
                             use_maxpool=False,
                             postfix=postfix)
        postfix = postfix + "_up2d"
        feature = UpSampling2D(size=size,
                               interpolation='bilinear',
                               name=postfix)(feature)
        size = size * 2
        feature_size = feature_size * 2
        out_features.append(feature)

    # concatenate all upsampled features
    x = Concatenate()(out_features)
    # perform 2 additional feature extraction 
    # and upsampling
    x = tconv_layer(x, 256, postfix="up_x2")
    x = tconv_layer(x, 256, postfix="up_x4")
    # generate the pixel-wise classifier
    x = Conv2DTranspose(filters=n_classes,
                        kernel_size=1,
                        strides=1,
                        padding='same',
                        kernel_initializer='he_normal',
                        name="pre_activation")(x)
    x = Softmax(name="segmentation")(x)

    model = Model(inputs, x, name="fcn")

    return model 
开发者ID:PacktPublishing,项目名称:Advanced-Deep-Learning-with-Keras,代码行数:58,代码来源:model.py

示例14: build_mv2_hourglass_model

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def build_mv2_hourglass_model(number_of_keypoints):
    hourglas_stage_num = 4
    input_shape = (192, 192, 3)  # h, w, c
    input = layers.Input(shape=input_shape)

    ## HEADER
    # cnn with regularizer
    x = layers.Conv2D(filters=16, kernel_size=(3, 3), strides=(2, 2), padding='SAME', kernel_regularizer=l2_regularizer_00004)(input)
    # batch norm
    x = layers.BatchNormalization(momentum=0.999)(x)
    # activation
    x = layers.ReLU(max_value=6)(x)

    # 128, 112
    x = _inverted_bottleneck(x, up_channel_rate=1, channels=16, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=1, channels=16, is_subsample=False, kernel_size=3)

    # 64, 56
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=True, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)


    captured_h, captured_w = int(x.shape[1]), int(x.shape[2])
    print(f"captured_h, captured_w: {captured_h}, {captured_w}")

    # HOURGLASS recursively
    # stage = 4
    #

    x, middle_output_layers = _hourglass_module(x, stage_index=hourglas_stage_num, number_of_keypoints=number_of_keypoints)

    print("before")
    for l in middle_output_layers:
        print(f"  l.shape: {l.shape}")

    for layer_index, middle_layer in enumerate(middle_output_layers):
        layer_stage = layer_index + 1
        h, w = middle_layer.shape[1], middle_layer.shape[2]
        if h == captured_h and w == captured_w:
            continue
        else:
            upsampling_size = (captured_h // h, captured_w // w)
            middle_output_layers[layer_index] = layers.UpSampling2D(size=upsampling_size, interpolation='bilinear')(middle_layer)

    print("after")
    for l in middle_output_layers:
        print(f"  l.shape: {l.shape}")

    model = models.Model(input, outputs=middle_output_layers)
    return model 
开发者ID:tucan9389,项目名称:tf2-mobile-pose-estimation,代码行数:55,代码来源:mv2_hourglass.py

示例15: _mobilenetV2

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import UpSampling2D [as 别名]
def _mobilenetV2(input):
    x = _inverted_bottleneck(input, up_channel_rate=1, channels=12, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=1, channels=12, is_subsample=False, kernel_size=3)
    mv2_branch_0 = x

    x = _inverted_bottleneck(x, up_channel_rate=6, channels=18, is_subsample=True, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=18, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=18, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=18, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=18, is_subsample=False, kernel_size=3)
    mv2_branch_1 = x

    x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=True, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=24, is_subsample=False, kernel_size=3)
    mv2_branch_2 = x

    x = _inverted_bottleneck(x, up_channel_rate=6, channels=48, is_subsample=True, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=48, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=48, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=48, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=48, is_subsample=False, kernel_size=3)
    mv2_branch_3 = x

    x = _inverted_bottleneck(x, up_channel_rate=6, channels=72, is_subsample=True, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=72, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=72, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=72, is_subsample=False, kernel_size=3)
    x = _inverted_bottleneck(x, up_channel_rate=6, channels=72, is_subsample=False, kernel_size=3)
    mv2_branch_4 = x

    x = layers.Concatenate(axis=3)([
        layers.MaxPool2D(pool_size=(4, 4), strides=(4, 4), padding='SAME')(mv2_branch_0),
        layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='SAME')(mv2_branch_1),
        mv2_branch_2,
        layers.UpSampling2D(size=(2, 2), interpolation='bilinear')(mv2_branch_3),
        layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(mv2_branch_4),
    ])

    return x 
开发者ID:tucan9389,项目名称:tf2-mobile-pose-estimation,代码行数:44,代码来源:mv2_cpm.py


注:本文中的tensorflow.keras.layers.UpSampling2D方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。