本文整理汇总了Python中tensorflow.keras.layers.MaxPooling3D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.MaxPooling3D方法的具体用法?Python layers.MaxPooling3D怎么用?Python layers.MaxPooling3D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.keras.layers
的用法示例。
在下文中一共展示了layers.MaxPooling3D方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: down_stage
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import MaxPooling3D [as 别名]
def down_stage(inputs, filters, kernel_size=3,
activation="relu", padding="SAME"):
conv = Conv3D(filters, kernel_size,
activation=activation, padding=padding)(inputs)
conv = GroupNormalization()(conv)
conv = Conv3D(filters, kernel_size,
activation=activation, padding=padding)(conv)
conv = GroupNormalization()(conv)
pool = MaxPooling3D()(conv)
return conv, pool
示例2: down_stage
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import MaxPooling3D [as 别名]
def down_stage(inputs, filters, kernel_size=3,
activation="relu", padding="SAME"):
conv = Conv3D(filters, kernel_size,
activation=activation, padding=padding)(inputs)
conv = GroupNormalization()(conv)
conv = Conv3D(filters, kernel_size,
activation=activation, padding=padding)(conv)
conv = GroupNormalization()(conv)
pool = MaxPooling3D()(conv)
return conv, pool
示例3: contracting_layer_3D
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import MaxPooling3D [as 别名]
def contracting_layer_3D(input, neurons, ba_norm, ba_norm_momentum):
conv1 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(input)
if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
conc1 = concatenate([input, conv1], axis=-1)
conv2 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(conc1)
if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
conc2 = concatenate([input, conv2], axis=-1)
pool = MaxPooling3D(pool_size=(2, 2, 2))(conc2)
return pool, conc2
# Create the middle layer between the contracting and expanding layers
示例4: contracting_layer_3D
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import MaxPooling3D [as 别名]
def contracting_layer_3D(input, neurons, ba_norm, ba_norm_momentum):
conv1 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(input)
if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
conv2 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(conv1)
if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
conc = concatenate([input, conv2], axis=-1)
pool = MaxPooling3D(pool_size=(2, 2, 2))(conc)
return pool, conc
# Create the middle layer between the contracting and expanding layers
示例5: contracting_layer_3D
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import MaxPooling3D [as 别名]
def contracting_layer_3D(input, neurons, ba_norm, ba_norm_momentum):
conv1 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(input)
if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
conv2 = Conv3D(neurons, (3,3,3), activation='relu', padding='same')(conv1)
if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
shortcut = Conv3D(neurons, (1, 1, 1), activation='relu', padding="same")(input)
add_layer = add([shortcut, conv2])
pool = MaxPooling3D(pool_size=(2, 2, 2))(add_layer)
return pool, add_layer
# Create the middle layer between the contracting and expanding layers
示例6: create_model_3D
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import MaxPooling3D [as 别名]
def create_model_3D(self, input_shape, n_labels=2):
# Input layer
inputs = Input(input_shape)
# MultiResUNet 3D model code
mresblock1 = MultiResBlock_3D(32, inputs)
pool1 = MaxPooling3D(pool_size=(2, 2, 2))(mresblock1)
mresblock1 = ResPath_3D(32, 4, mresblock1)
mresblock2 = MultiResBlock_3D(32*2, pool1)
pool2 = MaxPooling3D(pool_size=(2, 2, 2))(mresblock2)
mresblock2 = ResPath_3D(32*2, 3,mresblock2)
mresblock3 = MultiResBlock_3D(32*4, pool2)
pool3 = MaxPooling3D(pool_size=(2, 2, 2))(mresblock3)
mresblock3 = ResPath_3D(32*4, 2,mresblock3)
mresblock4 = MultiResBlock_3D(32*8, pool3)
pool4 = MaxPooling3D(pool_size=(2, 2, 2))(mresblock4)
mresblock4 = ResPath_3D(32*8, 1,mresblock4)
mresblock5 = MultiResBlock_3D(32*16, pool4)
up6 = concatenate([Conv3DTranspose(32*8, (2, 2, 2), strides=(2, 2, 2), padding='same')(mresblock5), mresblock4], axis=4)
mresblock6 = MultiResBlock_3D(32*8,up6)
up7 = concatenate([Conv3DTranspose(32*4, (2, 2, 2), strides=(2, 2, 2), padding='same')(mresblock6), mresblock3], axis=4)
mresblock7 = MultiResBlock_3D(32*4,up7)
up8 = concatenate([Conv3DTranspose(32*2, (2, 2, 2), strides=(2, 2, 2), padding='same')(mresblock7), mresblock2], axis=4)
mresblock8 = MultiResBlock_3D(32*2,up8)
up9 = concatenate([Conv3DTranspose(32, (2, 2, 2), strides=(2, 2, 2), padding='same')(mresblock8), mresblock1], axis=4)
mresblock9 = MultiResBlock_3D(32,up9)
conv10 = conv3d_bn(mresblock9 , n_labels, 1, 1, 1, activation=self.activation)
model = Model(inputs=[inputs], outputs=[conv10])
return model
#-----------------------------------------------------#
# Subroutines for 3D version #
#-----------------------------------------------------#
示例7: create_model_3D
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import MaxPooling3D [as 别名]
def create_model_3D(self, input_shape, n_labels=2):
# Input layer
inputs = Input(input_shape)
# Start the CNN Model chain with adding the inputs as first tensor
cnn_chain = inputs
# Cache contracting normalized conv layers
# for later copy & concatenate links
contracting_convs = []
# First contracting layer
neurons = self.feature_map[0]
cnn_chain = conv_layer_3D(cnn_chain, neurons, self.ba_norm, strides=1)
cnn_chain = conv_layer_3D(cnn_chain, neurons, self.ba_norm, strides=1)
contracting_convs.append(cnn_chain)
cnn_chain = MaxPooling3D(pool_size=(1, 2, 2))(cnn_chain)
# Remaining contracting layers
for i in range(1, len(self.feature_map)):
neurons = self.feature_map[i]
cnn_chain = conv_layer_3D(cnn_chain, neurons, self.ba_norm, strides=1)
cnn_chain = conv_layer_3D(cnn_chain, neurons, self.ba_norm, strides=1)
contracting_convs.append(cnn_chain)
cnn_chain = MaxPooling3D(pool_size=(2, 2, 2))(cnn_chain)
# Middle Layer
neurons = self.feature_map[-1]
cnn_chain = conv_layer_3D(cnn_chain, neurons, self.ba_norm, strides=1)
cnn_chain = conv_layer_3D(cnn_chain, neurons, self.ba_norm, strides=1)
# Expanding Layers except last layer
for i in reversed(range(1, len(self.feature_map))):
neurons = self.feature_map[i]
cnn_chain = Conv3DTranspose(neurons, (2, 2, 2), strides=(2, 2, 2),
padding='same')(cnn_chain)
cnn_chain = concatenate([cnn_chain, contracting_convs[i]], axis=-1)
cnn_chain = conv_layer_3D(cnn_chain, neurons, self.ba_norm, strides=1)
cnn_chain = conv_layer_3D(cnn_chain, neurons, self.ba_norm, strides=1)
# Last expanding layer
neurons = self.feature_map[0]
cnn_chain = Conv3DTranspose(neurons, (1, 2, 2), strides=(1, 2, 2),
padding='same')(cnn_chain)
cnn_chain = concatenate([cnn_chain, contracting_convs[0]], axis=-1)
cnn_chain = conv_layer_3D(cnn_chain, neurons, self.ba_norm, strides=1)
cnn_chain = conv_layer_3D(cnn_chain, neurons, self.ba_norm, strides=1)
# Output Layer
conv_out = Conv3D(n_labels, (1, 1, 1), activation=self.activation)(cnn_chain)
# Create Model with associated input and output layers
model = Model(inputs=[inputs], outputs=[conv_out])
# Return model
return model
#-----------------------------------------------------#
# Subroutines 2D #
#-----------------------------------------------------#
# Convolution layer
示例8: unet3D
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import MaxPooling3D [as 别名]
def unet3D(x_in,
img_shape, out_im_chans,
nf_enc=[64, 64, 128, 128, 256, 256, 512],
nf_dec=None,
layer_prefix='unet',
n_convs_per_stage=1,
):
ks = 3
x = x_in
encodings = []
encoding_vol_sizes = []
for i in range(len(nf_enc)):
for j in range(n_convs_per_stage):
x = Conv3D(
nf_enc[i],
kernel_size=ks,
strides=(1, 1, 1), padding='same',
name='{}_enc_conv3D_{}_{}'.format(layer_prefix, i, j + 1))(x)
x = LeakyReLU(0.2)(x)
encodings.append(x)
encoding_vol_sizes.append(np.asarray(x.get_shape().as_list()[1:-1]))
if i < len(nf_enc) - 1:
x = MaxPooling3D(pool_size=(2, 2, 2), padding='same', name='{}_enc_maxpool_{}'.format(layer_prefix, i))(x)
if nf_dec is None:
nf_dec = list(reversed(nf_enc[1:]))
for i in range(len(nf_dec)):
curr_shape = x.get_shape().as_list()[1:-1]
# only do upsample if we are not yet at max resolution
if np.any(curr_shape < list(img_shape[:len(curr_shape)])):
us = (2, 2, 2)
x = UpSampling3D(size=us, name='{}_dec_upsamp_{}'.format(layer_prefix, i))(x)
# just concatenate the final layer here
if i <= len(encodings) - 2:
x = _pad_or_crop_to_shape_3D(x, np.asarray(x.get_shape().as_list()[1:-1]), encoding_vol_sizes[-i-2])
x = Concatenate(axis=-1)([x, encodings[-i-2]])
for j in range(n_convs_per_stage):
x = Conv3D(nf_dec[i],
kernel_size=ks, strides=(1, 1, 1), padding='same',
name='{}_dec_conv3D_{}_{}'.format(layer_prefix, i, j))(x)
x = LeakyReLU(0.2)(x)
y = Conv3D(out_im_chans, kernel_size=1, padding='same',
name='{}_dec_conv3D_final'.format(layer_prefix))(x) # add your own activation after this model
# add your own activation after this model
return y
示例9: randflow_model
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import MaxPooling3D [as 别名]
def randflow_model(img_shape,
model,
model_name='randflow_model',
flow_sigma=None,
flow_amp=None,
blur_sigma=5,
interp_mode='linear',
indexing='xy',
):
n_dims = len(img_shape) - 1
x_in = Input(img_shape, name='img_input_randwarp')
if n_dims == 3:
flow = MaxPooling3D(2)(x_in)
flow = MaxPooling3D(2)(flow)
blur_sigma = int(np.ceil(blur_sigma / 4.))
flow_shape = tuple([int(s/4) for s in img_shape[:-1]] + [n_dims])
else:
flow = x_in
flow_shape = img_shape[:-1] + (n_dims,)
# random flow field
if flow_amp is None:
flow = RandFlow(name='randflow', img_shape=flow_shape, blur_sigma=blur_sigma, flow_sigma=flow_sigma)(flow)
elif flow_sigma is None:
flow = RandFlow_Uniform(name='randflow', img_shape=flow_shape, blur_sigma=blur_sigma, flow_amp=flow_amp)(flow)
if n_dims == 3:
flow = Reshape(flow_shape)(flow)
# upsample with linear interpolation
flow = Lambda(interp_upsampling)(flow)
flow = Lambda(interp_upsampling, output_shape=img_shape[:-1] + (n_dims,))(flow)
flow = Reshape(img_shape[:-1] + (n_dims,), name='randflow_out')(flow)
else:
flow = Reshape(img_shape[:-1] + (n_dims,), name='randflow_out')(flow)
x_warped = SpatialTransformer(interp_method=interp_mode, name='densespatialtransformer_img', indexing=indexing)(
[x_in, flow])
if model is not None:
model_outputs = model(x_warped)
if not isinstance(model_outputs, list):
model_outputs = [model_outputs]
else:
model_outputs = [x_warped, flow]
return Model(inputs=[x_in], outputs=model_outputs, name=model_name)