本文整理汇总了Python中tensorflow.keras.layers.LeakyReLU方法的典型用法代码示例。如果您正苦于以下问题:Python layers.LeakyReLU方法的具体用法?Python layers.LeakyReLU怎么用?Python layers.LeakyReLU使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.keras.layers
的用法示例。
在下文中一共展示了layers.LeakyReLU方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def __init__(self,
in_channels,
out_channels,
alpha,
data_format="channels_last",
**kwargs):
super(DarkUnit, self).__init__(**kwargs)
assert (out_channels % 2 == 0)
mid_channels = out_channels // 2
self.conv1 = conv1x1_block(
in_channels=in_channels,
out_channels=mid_channels,
activation=nn.LeakyReLU(alpha=alpha),
data_format=data_format,
name="conv1")
self.conv2 = conv3x3_block(
in_channels=mid_channels,
out_channels=out_channels,
activation=nn.LeakyReLU(alpha=alpha),
data_format=data_format,
name="conv2")
示例2: encoder_layer
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def encoder_layer(inputs,
filters=16,
kernel_size=3,
strides=2,
activation='relu',
instance_norm=True):
"""Builds a generic encoder layer made of Conv2D-IN-LeakyReLU
IN is optional, LeakyReLU may be replaced by ReLU
"""
conv = Conv2D(filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same')
x = inputs
if instance_norm:
x = InstanceNormalization()(x)
if activation == 'relu':
x = Activation('relu')(x)
else:
x = LeakyReLU(alpha=0.2)(x)
x = conv(x)
return x
示例3: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def __init__(self,
filters=64,
lrelu_alpha=0.2,
pad_type="constant",
norm_type="batch",
**kwargs):
super(StridedConv, self).__init__(name="StridedConv")
self.model = tf.keras.models.Sequential()
self.model.add(get_padding(pad_type, (1, 1)))
self.model.add(Conv2D(filters, 3, strides=(2, 2)))
self.model.add(LeakyReLU(lrelu_alpha))
self.model.add(get_padding(pad_type, (1, 1)))
self.model.add(Conv2D(filters * 2, 3))
self.model.add(get_norm(norm_type))
self.model.add(LeakyReLU(lrelu_alpha))
示例4: conv2d_unit
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def conv2d_unit(x, filters, kernels, strides=1):
"""Convolution Unit
This function defines a 2D convolution operation with BN and LeakyReLU.
# Arguments
x: Tensor, input tensor of conv layer.
filters: Integer, the dimensionality of the output space.
kernels: An integer or tuple/list of 2 integers, specifying the
width and height of the 2D convolution window.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the width and
height. Can be a single integer to specify the same value for
all spatial dimensions.
# Returns
Output tensor.
"""
x = Conv2D(filters, kernels,
padding='same',
strides=strides,
activation='linear',
kernel_regularizer=l2(5e-4))(x)
x = BatchNormalization()(x)
x = LeakyReLU(alpha=0.1)(x)
return x
示例5: residual_block
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def residual_block(inputs, filters):
"""Residual Block
This function defines a 2D convolution operation with BN and LeakyReLU.
# Arguments
x: Tensor, input tensor of residual block.
kernels: An integer or tuple/list of 2 integers, specifying the
width and height of the 2D convolution window.
# Returns
Output tensor.
"""
x = conv2d_unit(inputs, filters, (1, 1))
x = conv2d_unit(x, 2 * filters, (3, 3))
x = add([inputs, x])
x = Activation('linear')(x)
return x
示例6: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def __init__(self,
in_feats,
out_feats,
num_heads,
feat_drop=0.,
attn_drop=0.,
negative_slope=0.2,
residual=False,
activation=None):
super(GATConv, self).__init__()
self._num_heads = num_heads
self._in_feats = in_feats
self._out_feats = out_feats
xinit = tf.keras.initializers.VarianceScaling(scale=np.sqrt(
2), mode="fan_avg", distribution="untruncated_normal")
if isinstance(in_feats, tuple):
self.fc_src = layers.Dense(
out_feats * num_heads, use_bias=False, kernel_initializer=xinit)
self.fc_dst = layers.Dense(
out_feats * num_heads, use_bias=False, kernel_initializer=xinit)
else:
self.fc = layers.Dense(
out_feats * num_heads, use_bias=False, kernel_initializer=xinit)
self.attn_l = tf.Variable(initial_value=xinit(
shape=(1, num_heads, out_feats), dtype='float32'), trainable=True)
self.attn_r = tf.Variable(initial_value=xinit(
shape=(1, num_heads, out_feats), dtype='float32'), trainable=True)
self.feat_drop = layers.Dropout(rate=feat_drop)
self.attn_drop = layers.Dropout(rate=attn_drop)
self.leaky_relu = layers.LeakyReLU(alpha=negative_slope)
if residual:
if in_feats != out_feats:
self.res_fc = layers.Dense(
num_heads * out_feats, use_bias=False, kernel_initializer=xinit)
else:
self.res_fc = Identity()
else:
self.res_fc = None
# self.register_buffer('res_fc', None)
self.activation = activation
示例7: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def __init__(self,
passes,
backbone_out_channels,
outs_channels,
depth,
growth_rate,
use_bn,
in_channels=3,
in_size=(256, 256),
data_format="channels_last",
**kwargs):
super(IbpPose, self).__init__(**kwargs)
self.in_size = in_size
self.data_format = data_format
activation = nn.LeakyReLU(alpha=0.01)
self.backbone = IbpBackbone(
in_channels=in_channels,
out_channels=backbone_out_channels,
activation=activation,
data_format=data_format,
name="backbone")
self.decoder = SimpleSequential(name="decoder")
for i in range(passes):
merge = (i != passes - 1)
self.decoder.add(IbpPass(
channels=backbone_out_channels,
mid_channels=outs_channels,
depth=depth,
growth_rate=growth_rate,
merge=merge,
use_bn=use_bn,
activation=activation,
data_format=data_format,
name="pass{}".format(i + 1)))
示例8: dark_convYxY
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def dark_convYxY(in_channels,
out_channels,
alpha,
pointwise,
data_format="channels_last",
**kwargs):
"""
DarkNet unit.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
alpha : float
Slope coefficient for Leaky ReLU activation.
pointwise : bool
Whether use 1x1 (pointwise) convolution or 3x3 convolution.
data_format : str, default 'channels_last'
The ordering of the dimensions in tensors.
"""
if pointwise:
return conv1x1_block(
in_channels=in_channels,
out_channels=out_channels,
activation=nn.LeakyReLU(alpha=alpha),
data_format=data_format,
**kwargs)
else:
return conv3x3_block(
in_channels=in_channels,
out_channels=out_channels,
activation=nn.LeakyReLU(alpha=alpha),
data_format=data_format,
**kwargs)
示例9: build_discriminator
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def build_discriminator(inputs):
"""Build a Discriminator Model
Stack of LeakyReLU-Conv2D to discriminate real from fake.
The network does not converge with BN so it is not used here
unlike in [1] or original paper.
Arguments:
inputs (Layer): Input layer of the discriminator (the image)
Returns:
discriminator (Model): Discriminator Model
"""
kernel_size = 5
layer_filters = [32, 64, 128, 256]
x = inputs
for filters in layer_filters:
# first 3 convolution layers use strides = 2
# last one uses strides = 1
if filters == layer_filters[-1]:
strides = 1
else:
strides = 2
x = LeakyReLU(alpha=0.2)(x)
x = Conv2D(filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same')(x)
x = Flatten()(x)
x = Dense(1)(x)
x = Activation('sigmoid')(x)
discriminator = Model(inputs, x, name='discriminator')
return discriminator
示例10: decoder_layer
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def decoder_layer(inputs,
paired_inputs,
filters=16,
kernel_size=3,
strides=2,
activation='relu',
instance_norm=True):
"""Builds a generic decoder layer made of Conv2D-IN-LeakyReLU
IN is optional, LeakyReLU may be replaced by ReLU
Arguments: (partial)
inputs (tensor): the decoder layer input
paired_inputs (tensor): the encoder layer output
provided by U-Net skip connection &
concatenated to inputs.
"""
conv = Conv2DTranspose(filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same')
x = inputs
if instance_norm:
x = InstanceNormalization()(x)
if activation == 'relu':
x = Activation('relu')(x)
else:
x = LeakyReLU(alpha=0.2)(x)
x = conv(x)
x = concatenate([x, paired_inputs])
return x
示例11: get_model_meta
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def get_model_meta(filename):
print("Loading model " + filename)
global use_tf_keras
global Sequential, Dense, Dropout, Activation, Flatten, Lambda, Conv2D, MaxPooling2D, LeakyReLU, regularizers, K
try:
from keras.models import load_model as load_model_keras
ret = get_model_meta_real(filename, load_model_keras)
# model is successfully loaded. Import layers from keras
from keras.models import Sequential
from keras.layers import Input, Dense, Dropout, Activation, Flatten, Lambda
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import LeakyReLU
from keras import regularizers
from keras import backend as K
print("Model imported using keras")
except (KeyboardInterrupt, SystemExit, SyntaxError, NameError, IndentationError):
raise
except:
print("Failed to load model with keras. Trying tf.keras...")
use_tf_keras = True
from tensorflow.keras.models import load_model as load_model_tf
ret = get_model_meta_real(filename, load_model_tf)
# model is successfully loaded. Import layers from tensorflow.keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Input, Dense, Dropout, Activation, Flatten, Lambda
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras import regularizers
from tensorflow.keras import backend as K
print("Model imported using tensorflow.keras")
# put imported functions in global
Sequential, Dense, Dropout, Activation, Flatten, Lambda, Conv2D, MaxPooling2D, LeakyReLU, regularizers, K = \
Sequential, Dense, Dropout, Activation, Flatten, Lambda, Conv2D, MaxPooling2D, LeakyReLU, regularizers, K
return ret
示例12: get_model_meta_real
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def get_model_meta_real(filename, model_loader):
model = model_loader(filename, custom_objects = {"fn": lambda y_true, y_pred: y_pred, "tf": tf})
json_string = model.to_json()
model_meta = json.loads(json_string)
weight_dims = []
activations = set()
activation_param = None
input_dim = []
# print(model_meta)
try:
# for keras
model_layers = model_meta['config']['layers']
except (KeyError, TypeError):
# for tensorflow.keras
model_layers = model_meta['config']
for i, layer in enumerate(model_layers):
if i ==0 and layer['class_name'] == "Flatten":
input_dim = layer['config']['batch_input_shape']
if layer['class_name'] == "Dense":
units = layer['config']['units']
weight_dims.append(units)
activation = layer['config']['activation']
if activation != 'linear':
activations.add(activation)
elif layer['class_name'] == "Activation":
activation = layer['config']['activation']
activations.add(activation)
elif layer['class_name'] == "LeakyReLU":
activation_param = layer['config']['alpha']
activations.add("leaky")
elif layer['class_name'] == "Lambda":
if "arctan" in layer['config']["name"]:
activation = "arctan"
activations.add("arctan")
assert len(activations) == 1, "only one activation is supported," + str(activations)
return weight_dims, list(activations)[0], activation_param, input_dim
示例13: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def __init__(self,
base_filters=32,
lrelu_alpha=0.2,
pad_type="reflect",
norm_type="batch"):
super(Discriminator, self).__init__(name="Discriminator")
if pad_type == "reflect":
self.flat_pad = ReflectionPadding2D()
elif pad_type == "constant":
self.flat_pad = ZeroPadding2D()
else:
raise ValueError(f"pad_type not recognized {pad_type}")
self.flat_conv = Conv2D(base_filters, 3)
self.flat_lru = LeakyReLU(lrelu_alpha)
self.strided_conv1 = StridedConv(base_filters * 2,
lrelu_alpha,
pad_type,
norm_type)
self.strided_conv2 = StridedConv(base_filters * 4,
lrelu_alpha,
pad_type,
norm_type)
self.conv2 = Conv2D(base_filters * 8, 3)
if norm_type == "instance":
self.norm = InstanceNormalization()
elif norm_type == "batch":
self.norm = BatchNormalization()
self.lrelu = LeakyReLU(lrelu_alpha)
self.final_conv = Conv2D(1, 3)
示例14: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def __init__(self,
alpha=0.25,
**kwargs):
super(PReLU2, self).__init__(**kwargs)
self.active = nn.LeakyReLU(alpha=alpha)
示例15: convolution_block
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import LeakyReLU [as 别名]
def convolution_block(x, filters, size, strides=(1,1), padding='same', activation=True):
x = Conv2D(filters, size, strides=strides, padding=padding)(x)
x = BatchNormalization()(x)
if activation == True:
x = LeakyReLU(alpha=0.1)(x)
return x