当前位置: 首页>>代码示例>>Python>>正文


Python layers.GlobalAveragePooling1D方法代码示例

本文整理汇总了Python中tensorflow.keras.layers.GlobalAveragePooling1D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.GlobalAveragePooling1D方法的具体用法?Python layers.GlobalAveragePooling1D怎么用?Python layers.GlobalAveragePooling1D使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.GlobalAveragePooling1D方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: keras_estimator

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import GlobalAveragePooling1D [as 别名]
def keras_estimator(model_dir, config, learning_rate, vocab_size):
  """Creates a Keras Sequential model with layers.

  Args:
    model_dir: (str) file path where training files will be written.
    config: (tf.estimator.RunConfig) Configuration options to save model.
    learning_rate: (int) Learning rate.
    vocab_size: (int) Size of the vocabulary in number of words.

  Returns:
      A keras.Model
  """
  model = models.Sequential()
  model.add(Embedding(vocab_size, 16))
  model.add(GlobalAveragePooling1D())
  model.add(Dense(16, activation=tf.nn.relu))
  model.add(Dense(1, activation=tf.nn.sigmoid))

  # Compile model with learning parameters.
  optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
  model.compile(
      optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
  estimator = tf.keras.estimator.model_to_estimator(
      keras_model=model, model_dir=model_dir, config=config)
  return estimator 
开发者ID:GoogleCloudPlatform,项目名称:cloudml-samples,代码行数:27,代码来源:model.py

示例2: _build_model

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import GlobalAveragePooling1D [as 别名]
def _build_model(self):
        model = keras.Sequential([
            layers.Embedding(self.encoder.vocab_size, self.embedding_dim),
            layers.GlobalAveragePooling1D(),
            layers.Dense(16, activation='relu'),
            layers.Dense(1)
        ])
        model.compile(optimizer='adam',
                      loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
                      metrics=['accuracy'])
        model.summary()
        return model 
开发者ID:msgi,项目名称:nlp-journey,代码行数:14,代码来源:embedding.py


注:本文中的tensorflow.keras.layers.GlobalAveragePooling1D方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。