本文整理汇总了Python中tensorflow.keras.layers.Dropout方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Dropout方法的具体用法?Python layers.Dropout怎么用?Python layers.Dropout使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.keras.layers
的用法示例。
在下文中一共展示了layers.Dropout方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def build(self, input_shape):
self.W_list = []
self.b_list = []
self.dropouts = []
init = initializers.get(self.init)
prev_layer_size = self.n_graph_feat
for layer_size in self.layer_sizes:
self.W_list.append(init([prev_layer_size, layer_size]))
self.b_list.append(backend.zeros(shape=[
layer_size,
]))
if self.dropout is not None and self.dropout > 0.0:
self.dropouts.append(Dropout(rate=self.dropout))
else:
self.dropouts.append(None)
prev_layer_size = layer_size
self.W_list.append(init([prev_layer_size, self.n_outputs]))
self.b_list.append(backend.zeros(shape=[
self.n_outputs,
]))
if self.dropout is not None and self.dropout > 0.0:
self.dropouts.append(Dropout(rate=self.dropout))
else:
self.dropouts.append(None)
self.built = True
示例2: _create_encoder
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def _create_encoder(self, n_layers, dropout):
"""Create the encoder as a tf.keras.Model."""
input = self._create_features()
gather_indices = Input(shape=(2,), dtype=tf.int32)
prev_layer = input
for i in range(len(self._filter_sizes)):
filter_size = self._filter_sizes[i]
kernel_size = self._kernel_sizes[i]
if dropout > 0.0:
prev_layer = Dropout(rate=dropout)(prev_layer)
prev_layer = Conv1D(
filters=filter_size, kernel_size=kernel_size,
activation=tf.nn.relu)(prev_layer)
prev_layer = Flatten()(prev_layer)
prev_layer = Dense(
self._decoder_dimension, activation=tf.nn.relu)(prev_layer)
prev_layer = BatchNormalization()(prev_layer)
return tf.keras.Model(inputs=[input, gather_indices], outputs=prev_layer)
示例3: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def __init__(self,
g,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout):
super(GCN, self).__init__()
self.g = g
self.layer_list = []
# input layer
self.layer_list.append(GraphConv(in_feats, n_hidden, activation=activation))
# hidden layers
for i in range(n_layers - 1):
self.layer_list.append(GraphConv(n_hidden, n_hidden, activation=activation))
# output layer
self.layer_list.append(GraphConv(n_hidden, n_classes))
self.dropout = layers.Dropout(dropout)
示例4: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def __init__(self,
g,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout):
super(GCN, self).__init__()
self.g = g
self.layers =[]
# input layer
self.layers.append(GraphConv(in_feats, n_hidden, activation=activation))
# hidden layers
for i in range(n_layers - 1):
self.layers.append(GraphConv(n_hidden, n_hidden, activation=activation))
# output layer
self.layers.append(GraphConv(n_hidden, n_classes))
self.dropout = layers.Dropout(dropout)
示例5: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def __init__(self,
in_feats,
out_feats,
aggregator_type,
feat_drop=0.,
bias=True,
norm=None,
activation=None):
super(SAGEConv, self).__init__()
self._in_src_feats, self._in_dst_feats = expand_as_pair(in_feats)
self._out_feats = out_feats
self._aggre_type = aggregator_type
self.norm = norm
self.feat_drop = layers.Dropout(feat_drop)
self.activation = activation
# aggregator type: mean/pool/lstm/gcn
if aggregator_type == 'pool':
self.fc_pool = layers.Dense(self._in_src_feats)
if aggregator_type == 'lstm':
self.lstm = layers.LSTM(units=self._in_src_feats)
if aggregator_type != 'gcn':
self.fc_self = layers.Dense(out_feats, use_bias=bias)
self.fc_neigh = layers.Dense(out_feats, use_bias=bias)
示例6: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def __init__(self,
in_channels,
out_channels,
bottleneck_factor=4,
data_format="channels_last",
**kwargs):
super(DeepLabv3FinalBlock, self).__init__(**kwargs)
assert (in_channels % bottleneck_factor == 0)
self.data_format = data_format
mid_channels = in_channels // bottleneck_factor
self.conv1 = conv3x3_block(
in_channels=in_channels,
out_channels=mid_channels,
data_format=data_format,
name="conv1")
self.dropout = nn.Dropout(
rate=0.1,
name="dropout")
self.conv2 = conv1x1(
in_channels=mid_channels,
out_channels=out_channels,
use_bias=True,
data_format=data_format,
name="conv2")
示例7: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def __init__(self,
in_channels,
out_channels,
dropout_rate,
data_format="channels_last",
**kwargs):
super(DenseSimpleUnit, self).__init__(**kwargs)
self.data_format = data_format
self.use_dropout = (dropout_rate != 0.0)
inc_channels = out_channels - in_channels
self.conv = pre_conv3x3_block(
in_channels=in_channels,
out_channels=inc_channels,
data_format=data_format,
name="conv")
if self.use_dropout:
self.dropout = nn.Dropout(
rate=dropout_rate,
name="dropout")
示例8: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def __init__(self,
in_channels,
upscale_out_size,
bottleneck_factor,
data_format="channels_last",
**kwargs):
super(PSPBlock, self).__init__(**kwargs)
assert (in_channels % bottleneck_factor == 0)
mid_channels = in_channels // bottleneck_factor
self.pool = PyramidPooling(
in_channels=in_channels,
upscale_out_size=upscale_out_size,
data_format=data_format,
name="pool")
self.conv = conv3x3_block(
in_channels=4096,
out_channels=mid_channels,
data_format=data_format,
name="conv")
self.dropout = nn.Dropout(
rate=0.1,
name="dropout")
示例9: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def __init__(self,
in_channels,
out_channels,
bottleneck_factor=4,
data_format="channels_last",
**kwargs):
super(PSPFinalBlock, self).__init__(**kwargs)
assert (in_channels % bottleneck_factor == 0)
self.data_format = data_format
mid_channels = in_channels // bottleneck_factor
self.conv1 = conv3x3_block(
in_channels=in_channels,
out_channels=mid_channels,
data_format=data_format,
name="conv1")
self.dropout = nn.Dropout(
rate=0.1,
name="dropout")
self.conv2 = conv1x1(
in_channels=mid_channels,
out_channels=out_channels,
use_bias=True,
data_format=data_format,
name="conv2")
示例10: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def __init__(self,
in_channels,
out_channels,
bottleneck_factor=4,
data_format="channels_last",
**kwargs):
super(FCNFinalBlock, self).__init__(**kwargs)
assert (in_channels % bottleneck_factor == 0)
self.data_format = data_format
mid_channels = in_channels // bottleneck_factor
self.conv1 = conv3x3_block(
in_channels=in_channels,
out_channels=mid_channels,
data_format=data_format,
name="conv1")
self.dropout = nn.Dropout(
rate=0.1,
name="dropout")
self.conv2 = conv1x1(
in_channels=mid_channels,
out_channels=out_channels,
use_bias=True,
data_format=data_format,
name="conv2")
示例11: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def __init__(self, n_symbols: int, dropout: float = 0, use_pfam_alphabet: bool = True):
super().__init__()
self._use_pfam_alphabet = use_pfam_alphabet
if use_pfam_alphabet:
self.embed = Embedding(n_symbols, n_symbols)
else:
n_symbols = 21
self.embed = Embedding(n_symbols + 1, n_symbols)
self.dropout = Dropout(dropout)
self.rnn = Stack([
LSTM(1024, return_sequences=True, use_bias=True,
implementation=2, recurrent_activation='sigmoid'),
LSTM(1024, return_sequences=True, use_bias=True,
implementation=2, recurrent_activation='sigmoid')])
self.compute_logits = Dense(n_symbols, use_bias=True, activation='linear')
示例12: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def __init__(self,
n_symbols: int,
n_units: int = 1024,
n_layers: int = 3,
dropout: Optional[float] = 0.1) -> None:
super().__init__(n_symbols)
if dropout is None:
dropout = 0
self.embedding = Embedding(n_symbols, 128)
self.forward_lstm = Stack([
LSTM(n_units,
return_sequences=True) for _ in range(n_layers)],
name='forward_lstm')
self.reverse_lstm = Stack([
LSTM(n_units,
return_sequences=True) for _ in range(n_layers)],
name='reverse_lstm')
self.dropout = Dropout(dropout)
示例13: get_model
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def get_model(args):
model = models.Sequential()
model.add(
layers.Conv2D(args.conv1_size, (3, 3), activation=args.conv_activation, input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(args.conv2_size, (3, 3), activation=args.conv_activation))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation=args.conv_activation))
model.add(layers.Dropout(args.dropout))
model.add(layers.Flatten())
model.add(layers.Dense(args.hidden1_size, activation=args.dense_activation))
model.add(layers.Dense(10, activation='softmax'))
model.summary()
model.compile(optimizer=OPTIMIZERS[args.optimizer](learning_rate=args.learning_rate),
loss=args.loss,
metrics=['accuracy'])
return model
示例14: load
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def load(input_shape, output_shape, cfg):
nb_lstm_states = int(cfg['nb_lstm_states'])
inputs = KL.Input(shape=input_shape)
x = KL.CuDNNLSTM(units=nb_lstm_states, unit_forget_bias=True)(inputs)
x = KL.Dense(512)(x)
x = KL.Activation('relu')(x)
x = KL.Dropout(0.2)(x)
x = KL.Dense(256)(x)
x = KL.Activation('relu')(x)
x = KL.Dropout(0.3)(x)
mu = KL.Dense(1)(x)
std = KL.Dense(1)(x)
activation_fn = get_activation_function_by_name(cfg['activation_function'])
std = KL.Activation(activation_fn, name="exponential_activation")(std)
output = KL.Concatenate(axis=-1)([std, mu])
model = KM.Model(inputs=[inputs], outputs=[output])
return model
示例15: test_load_persist
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Dropout [as 别名]
def test_load_persist(self):
# define the model.
model = Sequential()
model.add(Dense(16, input_shape=(10,)))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy')
# fetch activations.
x = np.ones((2, 10))
activations = get_activations(model, x)
# persist the activations to the disk.
output = 'activations.json'
persist_to_json_file(activations, output)
# read them from the disk.
activations2 = load_activations_from_json_file(output)
for a1, a2 in zip(list(activations.values()), list(activations2.values())):
np.testing.assert_almost_equal(a1, a2)