本文整理汇总了Python中tensorflow.keras.layers.DepthwiseConv2D方法的典型用法代码示例。如果您正苦于以下问题:Python layers.DepthwiseConv2D方法的具体用法?Python layers.DepthwiseConv2D怎么用?Python layers.DepthwiseConv2D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.keras.layers
的用法示例。
在下文中一共展示了layers.DepthwiseConv2D方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _keras_depthwise_conv2d_core
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def _keras_depthwise_conv2d_core(shape=None, data=None):
assert shape is None or data is None
if shape is None:
shape = data.shape
init = tf.keras.initializers.RandomNormal(seed=1)
model = Sequential()
c2d = DepthwiseConv2D(
(3, 3),
depthwise_initializer=init,
data_format="channels_last",
use_bias=False,
input_shape=shape[1:],
)
model.add(c2d)
if data is None:
data = np.random.uniform(size=shape)
out = model.predict(data)
return model, out
示例2: residual_block_id
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def residual_block_id(self,tensor, feature_n,name=None):
if name != None:
depconv_1 = DepthwiseConv2D(3,2,padding='same',name=name+"/dconv")(tensor)
conv_2 = Conv2D(feature_n,1,name=name+"/conv")(depconv_1)
else:
depconv_1 = DepthwiseConv2D(3,2,padding='same')(tensor)
conv_2 = Conv2D(feature_n,1)(depconv_1)
maxpool_1 = MaxPool2D(pool_size=(2,2),strides=(2,2),padding='same')(tensor)
conv_zeros = Conv2D(feature_n/2,2,strides=2,use_bias=False,kernel_initializer=tf.zeros_initializer())(tensor)
padding_1 = Concatenate(axis=-1)([maxpool_1,conv_zeros])#self.feature_padding(maxpool_1)
add = Add()([padding_1,conv_2])
relu = ReLU()(add)
return relu
#def feature_padding(self,tensor,channels_n=0):
# #pad = tf.keras.layers.ZeroPadding2D(((0,0),(0,0),(0,tensor.shape[3])))(tensor)
# return Concatenate(axis=3)([tensor,pad])
示例3: _separable_conv
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def _separable_conv(name, kernel, stride, filters):
def _separable_conv_layer(layer_input):
output = layers.DepthwiseConv2D(name='{}/depthwise_conv'.format(name),
kernel_size=kernel,
strides=stride,
depth_multiplier=1,
padding=params.CONV_PADDING,
use_bias=False,
activation=None)(layer_input)
output = _batch_norm(name='{}/depthwise_conv/bn'.format(name))(output)
output = layers.ReLU(name='{}/depthwise_conv/relu'.format(name))(output)
output = layers.Conv2D(name='{}/pointwise_conv'.format(name),
filters=filters,
kernel_size=(1, 1),
strides=1,
padding=params.CONV_PADDING,
use_bias=False,
activation=None)(output)
output = _batch_norm(name='{}/pointwise_conv/bn'.format(name))(output)
output = layers.ReLU(name='{}/pointwise_conv/relu'.format(name))(output)
return output
return _separable_conv_layer
示例4: depthwiseConv_bn
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def depthwiseConv_bn(x, depth_multiplier, kernel_size, strides=1):
""" Depthwise convolution
The DepthwiseConv2D is just the first step of the Depthwise Separable convolution (without the pointwise step).
Depthwise Separable convolutions consists in performing just the first step in a depthwise spatial convolution
(which acts on each input channel separately).
This function defines a 2D Depthwise separable convolution operation with BN and relu6.
# Arguments
x: Tensor, input tensor of conv layer.
filters: Integer, the dimensionality of the output space.
kernel_size: An integer or tuple/list of 2 integers, specifying the
width and height of the 2D convolution window.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
# Returns
Output tensor.
"""
x = layers.DepthwiseConv2D(kernel_size=kernel_size, strides=strides, depth_multiplier=depth_multiplier,
padding='same', use_bias=False, kernel_regularizer=regularizers.l2(l=0.0003))(x)
x = layers.BatchNormalization(epsilon=1e-3, momentum=0.999)(x)
x = layers.ReLU(max_value=6)(x)
return x
示例5: xception_downsample_block
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def xception_downsample_block(x,channels,top_relu=False):
##separable conv1
if top_relu:
x=Activation("relu")(x)
x=DepthwiseConv2D((3,3),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
x=Conv2D(channels,(1,1),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
x=Activation("relu")(x)
##separable conv2
x=DepthwiseConv2D((3,3),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
x=Conv2D(channels,(1,1),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
x=Activation("relu")(x)
##separable conv3
x=DepthwiseConv2D((3,3),strides=(2,2),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
x=Conv2D(channels,(1,1),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
return x
示例6: xception_block
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def xception_block(x,channels):
##separable conv1
x=Activation("relu")(x)
x=DepthwiseConv2D((3,3),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
x=Conv2D(channels,(1,1),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
##separable conv2
x=Activation("relu")(x)
x=DepthwiseConv2D((3,3),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
x=Conv2D(channels,(1,1),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
##separable conv3
x=Activation("relu")(x)
x=DepthwiseConv2D((3,3),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
x=Conv2D(channels,(1,1),padding="same",use_bias=False)(x)
x=BatchNormalization()(x)
return x
示例7: SepConv_BN
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def SepConv_BN(x, filters, prefix, stride=1, kernel_size=3, rate=1, depth_activation=False, epsilon=1e-3):
if stride == 1:
depth_padding = 'same'
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
x = ZeroPadding2D((pad_beg, pad_end))(x)
depth_padding = 'valid'
if not depth_activation:
x = Activation('relu')(x)
x = DepthwiseConv2D((kernel_size, kernel_size), strides=(stride, stride), dilation_rate=(rate, rate),
padding=depth_padding, use_bias=False, name=prefix + '_depthwise')(x)
x = BatchNormalization(name=prefix + '_depthwise_BN', epsilon=epsilon)(x)
if depth_activation:
x = Activation('relu')(x)
x = Conv2D(filters, (1, 1), padding='same',
use_bias=False, name=prefix + '_pointwise')(x)
x = BatchNormalization(name=prefix + '_pointwise_BN', epsilon=epsilon)(x)
if depth_activation:
x = Activation('relu')(x)
return x
示例8: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def __init__(self,
data_format="channels_last",
**kwargs):
super(TF2Model, self).__init__(**kwargs)
self.conv = nn.DepthwiseConv2D(
# filters=channels,
kernel_size=(7, 7),
strides=2,
padding="same",
data_format=data_format,
dilation_rate=1,
use_bias=False,
name="conv")
示例9: _inverted_bottleneck
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def _inverted_bottleneck(input, up_channel_rate, channels, is_subsample, kernel_size):
if is_subsample:
strides = (2, 2)
else:
strides = (1, 1)
kernel_size = (kernel_size, kernel_size)
# 1x1 conv2d
x = layers.Conv2D(filters=up_channel_rate * input.shape[-1], kernel_size=(1, 1), strides=(1, 1), padding='SAME')(input)
x = layers.BatchNormalization(momentum=0.999)(x)
x = layers.ReLU(max_value=6)(x)
# activation
x = layers.ReLU()(x)
# 3x3 separable_conv2d
x = layers.DepthwiseConv2D(kernel_size=kernel_size, strides=strides, padding="SAME",
kernel_regularizer=l2_regularizer_00004)(x)
# activation
x = layers.ReLU()(x)
# 1x1 conv2d
x = layers.Conv2D(filters=channels, kernel_size=(1, 1), strides=(1, 1), padding='SAME')(x)
x = layers.BatchNormalization(momentum=0.999)(x)
x = layers.ReLU(max_value=6)(x)
if input.shape[-1] == channels:
x = input + x
return x
示例10: _separable_conv
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def _separable_conv(input, channels, kernel_size, strides):
# 3x3 separable_conv2d
x = layers.DepthwiseConv2D(kernel_size=kernel_size, strides=strides, padding="SAME",
kernel_regularizer=l2_regularizer_00004)(input)
# activation
x = layers.ReLU()(x)
# 1x1 conv2d
x = layers.Conv2D(filters=channels, kernel_size=(1, 1), strides=(1, 1), padding='SAME')(x)
x = layers.BatchNormalization(momentum=0.999)(x)
x = layers.ReLU(max_value=6)(x)
return x
示例11: light_conv3x3_bn
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def light_conv3x3_bn(x,
filters):
"""Utility function of lightweight 3x3 convolution.
lightweight 3x3 = 1x1 (linear) + dw 3x3 (nonlinear).
# Arguments
x: input tensor.
filters: number of output filters.
# Returns
Output tensor.
"""
bn_axis = 3
x = layers.Conv2D(
filters,
(1, 1),
strides=(1, 1),
padding='same',
use_bias=False)(x)
x = layers.DepthwiseConv2D(
(3, 3),
strides=(1, 1),
padding='same',
use_bias=False)(x)
x = layers.BatchNormalization(axis=bn_axis)(x)
x = layers.Activation('relu')(x)
return x
示例12: DarknetDepthwiseConv2D
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def DarknetDepthwiseConv2D(*args, **kwargs):
"""Wrapper to set Darknet parameters for Convolution2D."""
darknet_conv_kwargs = {'kernel_regularizer': l2(5e-4)}
darknet_conv_kwargs['padding'] = 'valid' if kwargs.get('strides')==(2,2) else 'same'
darknet_conv_kwargs.update(kwargs)
return DepthwiseConv2D(*args, **darknet_conv_kwargs)
示例13: Depthwise_Separable_Conv2D_BN_Leaky
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def Depthwise_Separable_Conv2D_BN_Leaky(filters, kernel_size=(3, 3), block_id_str=None):
"""Depthwise Separable Convolution2D."""
if not block_id_str:
block_id_str = str(K.get_uid())
return compose(
DepthwiseConv2D(kernel_size, padding='same', name='conv_dw_' + block_id_str),
BatchNormalization(name='conv_dw_%s_bn' % block_id_str),
LeakyReLU(alpha=0.1, name='conv_dw_%s_leaky_relu' % block_id_str),
Conv2D(filters, (1,1), padding='same', use_bias=False, strides=(1, 1), name='conv_pw_%s' % block_id_str),
BatchNormalization(name='conv_pw_%s_bn' % block_id_str),
LeakyReLU(alpha=0.1, name='conv_pw_%s_leaky_relu' % block_id_str))
示例14: _ep_block
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def _ep_block(inputs, filters, stride, expansion, block_id):
#in_channels = backend.int_shape(inputs)[-1]
in_channels = inputs.shape.as_list()[-1]
pointwise_conv_filters = int(filters)
x = inputs
prefix = 'ep_block_{}_'.format(block_id)
# Expand
x = Conv2D(int(expansion * in_channels), kernel_size=1, padding='same', use_bias=False, activation=None, name=prefix + 'expand')(x)
x = BatchNormalization(epsilon=1e-3, momentum=0.999, name=prefix + 'expand_BN')(x)
x = ReLU(6., name=prefix + 'expand_relu')(x)
# Depthwise
if stride == 2:
x = ZeroPadding2D(padding=correct_pad(K, x, 3), name=prefix + 'pad')(x)
x = DepthwiseConv2D(kernel_size=3, strides=stride, activation=None, use_bias=False, padding='same' if stride == 1 else 'valid', name=prefix + 'depthwise')(x)
x = BatchNormalization(epsilon=1e-3, momentum=0.999, name=prefix + 'depthwise_BN')(x)
x = ReLU(6., name=prefix + 'depthwise_relu')(x)
# Project
x = Conv2D(pointwise_conv_filters, kernel_size=1, padding='same', use_bias=False, activation=None, name=prefix + 'project')(x)
x = BatchNormalization(epsilon=1e-3, momentum=0.999, name=prefix + 'project_BN')(x)
if in_channels == pointwise_conv_filters and stride == 1:
return Add(name=prefix + 'add')([inputs, x])
return x
示例15: shuffle_unit
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import DepthwiseConv2D [as 别名]
def shuffle_unit(inputs, out_channels, bottleneck_ratio,strides=2,stage=1,block=1):
if K.image_data_format() == 'channels_last':
bn_axis = -1
else:
raise ValueError('Only channels last supported')
prefix = 'stage{}/block{}'.format(stage, block)
bottleneck_channels = int(out_channels * bottleneck_ratio)
if strides < 2:
c_hat, c = channel_split(inputs, '{}/spl'.format(prefix))
inputs = c
x = Conv2D(bottleneck_channels, kernel_size=(1,1), strides=1, padding='same', name='{}/1x1conv_1'.format(prefix))(inputs)
x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_1'.format(prefix))(x)
x = Activation('relu', name='{}/relu_1x1conv_1'.format(prefix))(x)
x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same', name='{}/3x3dwconv'.format(prefix))(x)
x = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv'.format(prefix))(x)
x = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1conv_2'.format(prefix))(x)
x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_2'.format(prefix))(x)
x = Activation('relu', name='{}/relu_1x1conv_2'.format(prefix))(x)
if strides < 2:
ret = Concatenate(axis=bn_axis, name='{}/concat_1'.format(prefix))([x, c_hat])
else:
s2 = DepthwiseConv2D(kernel_size=3, strides=2, padding='same', name='{}/3x3dwconv_2'.format(prefix))(inputs)
s2 = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv_2'.format(prefix))(s2)
s2 = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1_conv_3'.format(prefix))(s2)
s2 = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_3'.format(prefix))(s2)
s2 = Activation('relu', name='{}/relu_1x1conv_3'.format(prefix))(s2)
ret = Concatenate(axis=bn_axis, name='{}/concat_2'.format(prefix))([x, s2])
ret = Lambda(channel_shuffle, name='{}/channel_shuffle'.format(prefix))(ret)
return ret