当前位置: 首页>>代码示例>>Python>>正文


Python layers.Conv2DTranspose方法代码示例

本文整理汇总了Python中tensorflow.keras.layers.Conv2DTranspose方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Conv2DTranspose方法的具体用法?Python layers.Conv2DTranspose怎么用?Python layers.Conv2DTranspose使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.Conv2DTranspose方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: tconv_layer

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def tconv_layer(inputs,
                filters=32,
                kernel_size=3,
                strides=2,
                postfix=None):
    """Helper function to build Conv2DTranspose-BN-ReLU 
        layer
    """
    x = Conv2DTranspose(filters=filters,
                        kernel_size=kernel_size,
                        strides=strides,
                        padding='same',
                        kernel_initializer='he_normal',
                        name='tconv_'+postfix)(inputs)
    x = BatchNormalization(name="bn_"+postfix)(x)
    x = Activation('relu', name='relu_'+postfix)(x)
    return x 
开发者ID:PacktPublishing,项目名称:Advanced-Deep-Learning-with-Keras,代码行数:19,代码来源:model.py

示例2: expanding_layer_2D

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def expanding_layer_2D(input, neurons, concatenate_link, ba_norm,
                       ba_norm_momentum):
    up = concatenate([Conv2DTranspose(neurons, (2, 2), strides=(2, 2),
                     padding='same')(input), concatenate_link], axis=-1)
    conv1 = Conv2D(neurons, (3, 3,), activation='relu', padding='same')(up)
    if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
    conc1 = concatenate([up, conv1], axis=-1)
    conv2 = Conv2D(neurons, (3, 3), activation='relu', padding='same')(conc1)
    if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
    conc2 = concatenate([up, conv2], axis=-1)
    return conc2

#-----------------------------------------------------#
#                   Subroutines 3D                    #
#-----------------------------------------------------#
# Create a contracting layer 
开发者ID:frankkramer-lab,项目名称:MIScnn,代码行数:18,代码来源:dense.py

示例3: expanding_layer_2D

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def expanding_layer_2D(input, neurons, concatenate_link, ba_norm,
                       ba_norm_momentum):
    up = concatenate([Conv2DTranspose(neurons, (2, 2), strides=(2, 2),
                     padding='same')(input), concatenate_link], axis=-1)
    conv1 = Conv2D(neurons, (3, 3,), activation='relu', padding='same')(up)
    if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
    conv2 = Conv2D(neurons, (3, 3), activation='relu', padding='same')(conv1)
    if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
    shortcut = Conv2D(neurons, (1, 1), activation='relu', padding="same")(up)
    add_layer = add([shortcut, conv2])
    return add_layer

#-----------------------------------------------------#
#                   Subroutines 3D                    #
#-----------------------------------------------------#
# Create a contracting layer 
开发者ID:frankkramer-lab,项目名称:MIScnn,代码行数:18,代码来源:residual.py

示例4: trans_conv2d_bn

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def trans_conv2d_bn(x, filters, num_row, num_col, padding='same', strides=(2, 2), name=None):
    '''
    2D Transposed Convolutional layers

    Arguments:
        x {keras layer} -- input layer
        filters {int} -- number of filters
        num_row {int} -- number of rows in filters
        num_col {int} -- number of columns in filters

    Keyword Arguments:
        padding {str} -- mode of padding (default: {'same'})
        strides {tuple} -- stride of convolution operation (default: {(2, 2)})
        name {str} -- name of the layer (default: {None})

    Returns:
        [keras layer] -- [output layer]
    '''

    x = Conv2DTranspose(filters, (num_row, num_col), strides=strides, padding=padding)(x)
    x = BatchNormalization(axis=3, scale=False)(x)

    return x 
开发者ID:frankkramer-lab,项目名称:MIScnn,代码行数:25,代码来源:multiRes.py

示例5: create_model

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def create_model(self):
        print('[ImgDecoder] Starting create_model')
        dense = Dense(units=1024, name='p_img_dense')
        reshape = Reshape((1, 1, 1024))

        # for 64x64 img
        deconv1 = Conv2DTranspose(filters=128, kernel_size=4, strides=1, padding='valid', activation='relu')
        deconv2 = Conv2DTranspose(filters=64, kernel_size=5, strides=1, padding='valid', activation='relu', dilation_rate=3)
        deconv3 = Conv2DTranspose(filters=64, kernel_size=6, strides=1, padding='valid', activation='relu', dilation_rate=2)
        deconv4 = Conv2DTranspose(filters=32, kernel_size=5, strides=2, padding='valid', activation='relu', dilation_rate=1)
        deconv5 = Conv2DTranspose(filters=16, kernel_size=5, strides=1, padding='valid', activation='relu', dilation_rate=1)
        # deconv6 = Conv2DTranspose(filters=8, kernel_size=6, strides=2, padding='valid', activation='relu')
        deconv7 = Conv2DTranspose(filters=3, kernel_size=6, strides=1, padding='valid', activation='tanh')
        self.network = tf.keras.Sequential([
            dense,
            reshape,
            deconv1,
            deconv2,
            deconv3,
            deconv4,
            deconv5,
            deconv7], 
            name='p_img')

        print('[ImgDecoder] Done with create_model') 
开发者ID:microsoft,项目名称:AirSim-Drone-Racing-VAE-Imitation,代码行数:27,代码来源:decoders.py

示例6: __init__

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def __init__(self, up_scale,**kwargs):
        super(UpConvBlock, self).__init__(**kwargs)
        constant_features = 16
        k_reg = None if w_decay is None else l2(w_decay)
        features = []
        total_up_scale = 2 ** up_scale
        for i in range(up_scale):
            out_features = 1 if i == up_scale-1 else constant_features
            if i==up_scale-1:
                features.append(layers.Conv2D(
                    filters=out_features, kernel_size=(1,1), strides=(1,1), padding='same',
                    activation='relu', kernel_initializer=tf.initializers.TruncatedNormal(stddev=0.1),
                    kernel_regularizer=k_reg,use_bias=True)) #tf.initializers.TruncatedNormal(mean=0.)
                features.append(layers.Conv2DTranspose(
                    out_features, kernel_size=(total_up_scale,total_up_scale),
                    strides=(2,2), padding='same',
                    kernel_initializer=tf.initializers.TruncatedNormal(stddev=0.1),
                    kernel_regularizer=k_reg,use_bias=True)) # stddev=0.1
            else:

                features.append(layers.Conv2D(
                    filters=out_features, kernel_size=(1,1), strides=(1,1), padding='same',
                    activation='relu',kernel_initializer=weight_init,
                kernel_regularizer=k_reg,use_bias=True))
                features.append(layers.Conv2DTranspose(
                    out_features, kernel_size=(total_up_scale,total_up_scale),
                    strides=(2,2), padding='same', use_bias=True,
                    kernel_initializer=weight_init, kernel_regularizer=k_reg))

        self.features = keras.Sequential(features) 
开发者ID:xavysp,项目名称:DexiNed,代码行数:32,代码来源:model.py

示例7: __init__

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def __init__(self,
                 dim2,
                 classes,
                 out_size,
                 bn_eps,
                 data_format="channels_last",
                 **kwargs):
        super(SBDecoder, self).__init__(**kwargs)
        self.decode1 = SBDecodeBlock(
            channels=classes,
            out_size=((out_size[0] // 8, out_size[1] // 8) if out_size else None),
            bn_eps=bn_eps,
            data_format=data_format,
            name="decode1")
        self.decode2 = SBDecodeBlock(
            channels=classes,
            out_size=((out_size[0] // 4, out_size[1] // 4) if out_size else None),
            bn_eps=bn_eps,
            data_format=data_format,
            name="decode2")
        self.conv3c = conv1x1_block(
            in_channels=dim2,
            out_channels=classes,
            bn_eps=bn_eps,
            activation=(lambda: PReLU2(classes, data_format=data_format, name="activ")),
            data_format=data_format,
            name="conv3c")
        self.output_conv = nn.Conv2DTranspose(
            filters=classes,
            kernel_size=2,
            strides=2,
            padding="valid",
            output_padding=0,
            use_bias=False,
            data_format=data_format,
            name="output_conv")
        self.up = InterpolationBlock(
            scale_factor=2,
            out_size=out_size,
            data_format=data_format,
            name="up") 
开发者ID:osmr,项目名称:imgclsmob,代码行数:43,代码来源:sinet.py

示例8: __init__

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 strides=1,
                 padding=0,
                 out_padding=0,
                 dilation=1,
                 groups=1,
                 use_bias=True,
                 data_format="channels_last",
                 **kwargs):
        super(Deconv2d, self).__init__(**kwargs)
        assert (dilation == 1)
        assert (groups == 1)
        assert (in_channels is not None)

        if isinstance(padding, int):
            padding = (padding, padding)

        self.use_crop = (padding[0] > 0) or (padding[1] > 0)
        if self.use_crop:
            self.crop = nn.Cropping2D(
                cropping=padding,
                data_format=data_format,
                name="crop")

        self.conv = nn.Conv2DTranspose(
            filters=out_channels,
            kernel_size=kernel_size,
            strides=strides,
            padding="valid",
            output_padding=out_padding,
            data_format=data_format,
            dilation_rate=dilation,
            use_bias=use_bias,
            name="conv") 
开发者ID:osmr,项目名称:imgclsmob,代码行数:39,代码来源:common.py

示例9: CAE

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def CAE(input_shape=(28, 28, 1), filters=[32, 64, 128, 10]):
    model = Sequential()
    if input_shape[0] % 8 == 0:
        pad3 = 'same'
    else:
        pad3 = 'valid'

    model.add(InputLayer(input_shape))
    model.add(Conv2D(filters[0], 5, strides=2, padding='same', activation='relu', name='conv1'))

    model.add(Conv2D(filters[1], 5, strides=2, padding='same', activation='relu', name='conv2'))

    model.add(Conv2D(filters[2], 3, strides=2, padding=pad3, activation='relu', name='conv3'))

    model.add(Flatten())
    model.add(Dense(units=filters[3], name='embedding'))
    model.add(Dense(units=filters[2]*int(input_shape[0]/8)*int(input_shape[0]/8), activation='relu'))

    model.add(Reshape((int(input_shape[0]/8), int(input_shape[0]/8), filters[2])))
    model.add(Conv2DTranspose(filters[1], 3, strides=2, padding=pad3, activation='relu', name='deconv3'))

    model.add(Conv2DTranspose(filters[0], 5, strides=2, padding='same', activation='relu', name='deconv2'))

    model.add(Conv2DTranspose(input_shape[2], 5, strides=2, padding='same', name='deconv1'))
    encoder = Model(inputs=model.input, outputs=model.get_layer('embedding').output)
    return model, encoder 
开发者ID:XifengGuo,项目名称:DEC-DA,代码行数:28,代码来源:ConvDEC.py

示例10: decoder_layer

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def decoder_layer(inputs,
                  paired_inputs,
                  filters=16,
                  kernel_size=3,
                  strides=2,
                  activation='relu',
                  instance_norm=True):
    """Builds a generic decoder layer made of Conv2D-IN-LeakyReLU
    IN is optional, LeakyReLU may be replaced by ReLU
    Arguments: (partial)
    inputs (tensor): the decoder layer input
    paired_inputs (tensor): the encoder layer output 
          provided by U-Net skip connection &
          concatenated to inputs.

    """

    conv = Conv2DTranspose(filters=filters,
                           kernel_size=kernel_size,
                           strides=strides,
                           padding='same')

    x = inputs
    if instance_norm:
        x = InstanceNormalization()(x)
    if activation == 'relu':
        x = Activation('relu')(x)
    else:
        x = LeakyReLU(alpha=0.2)(x)
    x = conv(x)
    x = concatenate([x, paired_inputs])
    return x 
开发者ID:PacktPublishing,项目名称:Advanced-Deep-Learning-with-Keras,代码行数:34,代码来源:cyclegan-7.1.1.py

示例11: decode

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def decode(filters):
    """upsample sequential model."""
    net = Seq()
    net.add(
        layers.Conv2DTranspose(
            filters, 3, strides=2, padding="same", kernel_initializer="he_normal"
        )
    )
    net.add(layers.ReLU())
    return net 
开发者ID:intel,项目名称:stacks-usecase,代码行数:12,代码来源:custom_unet.py

示例12: last_layer

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def last_layer(out_channels=1):
    """last layer of u-net.
    """
    return layers.Conv2DTranspose(
        filters=out_channels,
        kernel_size=1,
        strides=2,
        padding="same",
        activation="sigmoid",
        kernel_initializer="he_normal",
    ) 
开发者ID:intel,项目名称:stacks-usecase,代码行数:13,代码来源:custom_unet.py

示例13: upsample

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def upsample(N, input_layer, base_filters=64):
    """deconv defaults."""
    return Conv2DTranspose(
        filters=base_filters * N,
        kernel_size=3,
        strides=(2, 2),
        padding="same",
        kernel_initializer="he_normal",
    )(input_layer) 
开发者ID:intel,项目名称:stacks-usecase,代码行数:11,代码来源:classic_unet.py

示例14: expanding_layer_2D

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def expanding_layer_2D(input, neurons, concatenate_link, ba_norm,
                       ba_norm_momentum):
    up = concatenate([Conv2DTranspose(neurons, (2, 2), strides=(2, 2),
                     padding='same')(input), concatenate_link], axis=-1)
    conv1 = Conv2D(neurons, (3, 3,), activation='relu', padding='same')(up)
    if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
    conv2 = Conv2D(neurons, (3, 3), activation='relu', padding='same')(conv1)
    if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
    conc = concatenate([up, conv2], axis=-1)
    return conc

#-----------------------------------------------------#
#                   Subroutines 3D                    #
#-----------------------------------------------------#
# Create a contracting layer 
开发者ID:frankkramer-lab,项目名称:MIScnn,代码行数:17,代码来源:compact.py

示例15: expanding_layer_2D

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Conv2DTranspose [as 别名]
def expanding_layer_2D(input, neurons, concatenate_link, ba_norm,
                       ba_norm_momentum):
    up = concatenate([Conv2DTranspose(neurons, (2, 2), strides=(2, 2),
                     padding='same')(input), concatenate_link], axis=-1)
    conv1 = Conv2D(neurons, (3, 3,), activation='relu', padding='same')(up)
    if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
    conv2 = Conv2D(neurons, (3, 3), activation='relu', padding='same')(conv1)
    if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
    return conv2

#-----------------------------------------------------#
#                   Subroutines 3D                    #
#-----------------------------------------------------#
# Create a contracting layer 
开发者ID:frankkramer-lab,项目名称:MIScnn,代码行数:16,代码来源:standard.py


注:本文中的tensorflow.keras.layers.Conv2DTranspose方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。