当前位置: 首页>>代码示例>>Python>>正文


Python layers.Bidirectional方法代码示例

本文整理汇总了Python中tensorflow.keras.layers.Bidirectional方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Bidirectional方法的具体用法?Python layers.Bidirectional怎么用?Python layers.Bidirectional使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras.layers的用法示例。


在下文中一共展示了layers.Bidirectional方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_lstm_layer_2

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Bidirectional [as 别名]
def create_lstm_layer_2(self):
        ker_in = glorot_uniform(seed=self.seed)
        rec_in = Orthogonal(seed=self.seed)
        bioutp = Bidirectional(LSTM(self.aggregation_dim,
                                    input_shape=(self.max_sequence_length, 8 * self.perspective_num,),
                                    kernel_regularizer=None,
                                    recurrent_regularizer=None,
                                    bias_regularizer=None,
                                    activity_regularizer=None,
                                    recurrent_dropout=self.recdrop_val,
                                    dropout=self.inpdrop_val,
                                    kernel_initializer=ker_in,
                                    recurrent_initializer=rec_in,
                                    return_sequences=False),
                               merge_mode='concat',
                               name="sentence_embedding")
        return bioutp 
开发者ID:deepmipt,项目名称:DeepPavlov,代码行数:19,代码来源:mpm_siamese_network.py

示例2: __init__

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Bidirectional [as 别名]
def __init__(self,
                 latent_dim: int,
                 name: str = 'encoder_lstm') -> None:
        """
        Bidirectional LSTM encoder.

        Parameters
        ----------
        latent_dim
            Latent dimension. Must be an even number given the bidirectional encoder.
        name
            Name of encoder.
        """
        super(EncoderLSTM, self).__init__(name=name)
        self.encoder_net = Bidirectional(LSTM(latent_dim // 2, return_state=True, return_sequences=True)) 
开发者ID:SeldonIO,项目名称:alibi-detect,代码行数:17,代码来源:autoencoder.py

示例3: create_lstm_layer_1

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Bidirectional [as 别名]
def create_lstm_layer_1(self):
        ker_in = glorot_uniform(seed=self.seed)
        rec_in = Orthogonal(seed=self.seed)
        bioutp = Bidirectional(LSTM(self.hidden_dim,
                                    input_shape=(self.max_sequence_length, self.embedding_dim,),
                                    kernel_regularizer=None,
                                    recurrent_regularizer=None,
                                    bias_regularizer=None,
                                    activity_regularizer=None,
                                    recurrent_dropout=self.recdrop_val,
                                    dropout=self.inpdrop_val,
                                    kernel_initializer=ker_in,
                                    recurrent_initializer=rec_in,
                                    return_sequences=True), merge_mode=None)
        return bioutp 
开发者ID:deepmipt,项目名称:DeepPavlov,代码行数:17,代码来源:mpm_siamese_network.py

示例4: build

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Bidirectional [as 别名]
def build(self, hp, inputs=None):
        inputs = nest.flatten(inputs)
        utils.validate_num_inputs(inputs, 1)
        input_node = inputs[0]
        shape = input_node.shape.as_list()
        if len(shape) != 3:
            raise ValueError(
                'Expect the input tensor to have '
                'at least 3 dimensions for rnn models, '
                'but got {shape}'.format(shape=input_node.shape))

        feature_size = shape[-1]
        output_node = input_node

        bidirectional = self.bidirectional
        if bidirectional is None:
            bidirectional = hp.Boolean('bidirectional', default=True)
        layer_type = self.layer_type or hp.Choice('layer_type',
                                                  ['gru', 'lstm'],
                                                  default='lstm')
        num_layers = self.num_layers or hp.Choice('num_layers',
                                                  [1, 2, 3],
                                                  default=2)
        rnn_layers = {
            'gru': layers.GRU,
            'lstm': layers.LSTM
        }
        in_layer = rnn_layers[layer_type]
        for i in range(num_layers):
            return_sequences = True
            if i == num_layers - 1:
                return_sequences = self.return_sequences
            if bidirectional:
                output_node = layers.Bidirectional(
                    in_layer(feature_size,
                             return_sequences=return_sequences))(output_node)
            else:
                output_node = in_layer(
                    feature_size,
                    return_sequences=return_sequences)(output_node)
        return output_node 
开发者ID:keras-team,项目名称:autokeras,代码行数:43,代码来源:basic.py

示例5: _build_graph

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Bidirectional [as 别名]
def _build_graph(self):
    """Build the model."""
    smiles_seqs = Input(dtype=tf.int32, shape=(self.max_seq_len,), name='Input')
    rnn_input = tf.keras.layers.Embedding(
        input_dim=len(self.char_to_idx),
        output_dim=self.embedding_dim)(smiles_seqs)

    if self.use_conv:
      rnn_input = Conv1D(
          filters=self.filters,
          kernel_size=self.kernel_size,
          strides=self.strides,
          activation=tf.nn.relu,
          name='Conv1D')(rnn_input)

    rnn_embeddings = rnn_input
    for idx, rnn_type in enumerate(self.rnn_types[:-1]):
      rnn_layer = RNN_DICT[rnn_type]
      layer = rnn_layer(units=self.rnn_sizes[idx], return_sequences=True)
      if self.use_bidir:
        layer = Bidirectional(layer)

      rnn_embeddings = layer(rnn_embeddings)

    # Last layer sequences not returned.
    layer = RNN_DICT[self.rnn_types[-1]](units=self.rnn_sizes[-1])
    if self.use_bidir:
      layer = Bidirectional(layer)
    rnn_embeddings = layer(rnn_embeddings)

    if self.mode == "classification":
      logits = Dense(self.n_tasks * self.n_classes)(rnn_embeddings)
      logits = Reshape((self.n_tasks, self.n_classes))(logits)
      if self.n_classes == 2:
        output = Activation(activation='sigmoid')(logits)
        loss = SigmoidCrossEntropy()
      else:
        output = Softmax()(logits)
        loss = SoftmaxCrossEntropy()
      outputs = [output, logits]
      output_types = ['prediction', 'loss']

    else:
      output = Dense(self.n_tasks * 1, name='Dense')(rnn_embeddings)
      output = Reshape((self.n_tasks, 1), name='Reshape')(output)
      outputs = [output]
      output_types = ['prediction']
      loss = L2Loss()

    model = tf.keras.Model(inputs=[smiles_seqs], outputs=outputs)
    return model, loss, output_types 
开发者ID:deepchem,项目名称:deepchem,代码行数:53,代码来源:chemnet_models.py

示例6: build_model

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Bidirectional [as 别名]
def build_model(num_classes, image_width=None, channels=1):
    """
    build CNN-RNN model
    """
    def vgg_style(input_tensor):
        """
        The original feature extraction structure from CRNN paper.
        Related paper: https://ieeexplore.ieee.org/abstract/document/7801919
        """
        x = layers.Conv2D(
            filters=64, 
            kernel_size=3, 
            padding='same',
            activation='relu')(input_tensor)
        x = layers.MaxPool2D(pool_size=2, padding='same')(x)

        x = layers.Conv2D(
            filters=128, 
            kernel_size=3, 
            padding='same',
            activation='relu')(x)
        x = layers.MaxPool2D(pool_size=2, padding='same')(x)

        x = layers.Conv2D(filters=256, kernel_size=3, padding='same')(x)
        x = layers.BatchNormalization()(x)
        x = layers.Activation('relu')(x)
        x = layers.Conv2D(filters=256, kernel_size=3, padding='same',
                          activation='relu')(x)
        x = layers.MaxPool2D(pool_size=(2, 2), strides=(2, 1), 
                             padding='same')(x)

        x = layers.Conv2D(filters=512, kernel_size=3, padding='same')(x)
        x = layers.BatchNormalization()(x)
        x = layers.Activation('relu')(x)
        x = layers.Conv2D(filters=512, kernel_size=3, padding='same',
                          activation='relu')(x)
        x = layers.MaxPool2D(pool_size=(2, 2), strides=(2, 1), 
                             padding='same')(x)

        x = layers.Conv2D(filters=512, kernel_size=2)(x)
        x = layers.BatchNormalization()(x)
        x = layers.Activation('relu')(x)
        return x

    img_input = keras.Input(shape=(32, image_width, channels))
    x = vgg_style(img_input)
    x = layers.Reshape((-1, 512))(x)

    x = layers.Bidirectional(layers.LSTM(units=256, return_sequences=True))(x)
    x = layers.Bidirectional(layers.LSTM(units=256, return_sequences=True))(x)
    x = layers.Dense(units=num_classes)(x)
    return keras.Model(inputs=img_input, outputs=x, name='CRNN') 
开发者ID:FLming,项目名称:CRNN.tf2,代码行数:54,代码来源:model.py

示例7: build_model

# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Bidirectional [as 别名]
def build_model(feature_len, num_classes, gru_size=128,
                classify_activation='softmax', time_steps=None,
                allow_cudnn=True):
    """Build a bidirectional GRU model with CuDNNGRU support.

    CuDNNGRU implementation is claimed to give speed-up on GPU of 7x.
    The function will build a model capable of running on GPU with
    CuDNNGRU provided a) a GPU is present, b) the option has been
    allowed by the `allow_cudnn` argument; otherwise a compatible
    (but not CuDNNGRU accelerated model) is built.

    :param feature_len: int, number of features for each pileup column.
    :param num_classes: int, number of output class labels.
    :param gru_size: int, size of each GRU layer.
    :param classify_activation: str, activation to use in classification layer.
    :param time_steps: int, number of pileup columns in a sample.
    :param allow_cudnn: bool, opt-in to cudnn when using a GPU.

    :returns: `keras.models.Sequential` object.

    """
    import tensorflow as tf
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense, GRU, CuDNNGRU, Bidirectional

    # Determine whether to use CuDNNGRU or not
    cudnn = False
    if tf.test.is_gpu_available(cuda_only=True) and allow_cudnn:
        cudnn = True
    logger.info("Building model with cudnn optimization: {}".format(cudnn))

    model = Sequential()
    input_shape = (time_steps, feature_len)
    for i in [1, 2]:
        name = 'gru{}'.format(i)
        # Options here are to be mutually compatible: train with CuDNNGRU
        # but allow inference with GRU (on cpu).
        # https://gist.github.com/bzamecnik/bd3786a074f8cb891bc2a397343070f1
        if cudnn:
            gru = CuDNNGRU(gru_size, return_sequences=True, name=name)
        else:
            gru = GRU(
                gru_size, reset_after=True, recurrent_activation='sigmoid',
                return_sequences=True, name=name)
        model.add(Bidirectional(gru, input_shape=input_shape))

    # see keras #10417 for why we specify input shape
    model.add(Dense(
        num_classes, activation=classify_activation, name='classify',
        input_shape=(time_steps, 2 * gru_size)
    ))

    return model 
开发者ID:nanoporetech,项目名称:medaka,代码行数:55,代码来源:models.py


注:本文中的tensorflow.keras.layers.Bidirectional方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。