本文整理汇总了Python中tensorflow.keras.layers.BatchNormalization方法的典型用法代码示例。如果您正苦于以下问题:Python layers.BatchNormalization方法的具体用法?Python layers.BatchNormalization怎么用?Python layers.BatchNormalization使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.keras.layers
的用法示例。
在下文中一共展示了layers.BatchNormalization方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def __init__(self, out_features,**kwargs):
super(_DenseLayer, self).__init__(**kwargs)
k_reg = None if w_decay is None else l2(w_decay)
self.layers = []
self.layers.append(tf.keras.Sequential(
[
layers.ReLU(),
layers.Conv2D(
filters=out_features, kernel_size=(3,3), strides=(1,1), padding='same',
use_bias=True, kernel_initializer=weight_init,
kernel_regularizer=k_reg),
layers.BatchNormalization(),
layers.ReLU(),
layers.Conv2D(
filters=out_features, kernel_size=(3,3), strides=(1,1), padding='same',
use_bias=True, kernel_initializer=weight_init,
kernel_regularizer=k_reg),
layers.BatchNormalization(),
])) # first relu can be not needed
示例2: _create_encoder
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def _create_encoder(self, n_layers, dropout):
"""Create the encoder as a tf.keras.Model."""
input = self._create_features()
gather_indices = Input(shape=(2,), dtype=tf.int32)
prev_layer = input
for i in range(len(self._filter_sizes)):
filter_size = self._filter_sizes[i]
kernel_size = self._kernel_sizes[i]
if dropout > 0.0:
prev_layer = Dropout(rate=dropout)(prev_layer)
prev_layer = Conv1D(
filters=filter_size, kernel_size=kernel_size,
activation=tf.nn.relu)(prev_layer)
prev_layer = Flatten()(prev_layer)
prev_layer = Dense(
self._decoder_dimension, activation=tf.nn.relu)(prev_layer)
prev_layer = BatchNormalization()(prev_layer)
return tf.keras.Model(inputs=[input, gather_indices], outputs=prev_layer)
示例3: conv2d_bn
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def conv2d_bn(x,
filters,
kernel_size,
strides=1,
padding='same',
activation='relu',
use_bias=False,
name=None):
x = Conv2D(filters,
kernel_size,
strides=strides,
padding=padding,
use_bias=use_bias,
name=name)(x)
if not use_bias:
bn_axis = 1 if K.image_data_format() == 'channels_first' else 3
bn_name = _generate_layer_name('BatchNorm', prefix=name)
x = BatchNormalization(axis=bn_axis, momentum=0.995, epsilon=0.001,
scale=False, name=bn_name)(x)
if activation is not None:
ac_name = _generate_layer_name('Activation', prefix=name)
x = Activation(activation, name=ac_name)(x)
return x
示例4: create_model
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def create_model(trainable=False):
model = MobileNetV2(input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3), include_top=False, alpha=ALPHA, weights="imagenet")
for layer in model.layers:
layer.trainable = trainable
block = model.get_layer("block_16_project_BN").output
x = Conv2D(112, padding="same", kernel_size=3, strides=1, activation="relu")(block)
x = Conv2D(112, padding="same", kernel_size=3, strides=1, use_bias=False)(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
x = Conv2D(5, padding="same", kernel_size=1, activation="sigmoid")(x)
model = Model(inputs=model.input, outputs=x)
# divide by 2 since d/dweight learning_rate * weight^2 = 2 * learning_rate * weight
# see https://arxiv.org/pdf/1711.05101.pdf
regularizer = l2(WEIGHT_DECAY / 2)
for weight in model.trainable_weights:
with tf.keras.backend.name_scope("weight_regularizer"):
model.add_loss(regularizer(weight)) # in tf2.0: lambda: regularizer(weight)
return model
示例5: conv_layer
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def conv_layer(inputs,
filters=32,
kernel_size=3,
strides=1,
use_maxpool=True,
postfix=None,
activation=None):
x = conv2d(inputs,
filters=filters,
kernel_size=kernel_size,
strides=strides,
name='conv'+postfix)
x = BatchNormalization(name="bn"+postfix)(x)
x = ELU(name='elu'+postfix)(x)
if use_maxpool:
x = MaxPooling2D(name='pool'+postfix)(x)
return x
示例6: conv_layer
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def conv_layer(inputs,
filters=32,
kernel_size=3,
strides=1,
use_maxpool=True,
postfix=None,
activation=None):
"""Helper function to build Conv2D-BN-ReLU layer
with optional MaxPooling2D.
"""
x = Conv2D(filters=filters,
kernel_size=kernel_size,
strides=strides,
kernel_initializer='he_normal',
name="conv_"+postfix,
padding='same')(inputs)
x = BatchNormalization(name="bn_"+postfix)(x)
x = Activation('relu', name='relu_'+postfix)(x)
if use_maxpool:
x = MaxPooling2D(name='pool'+postfix)(x)
return x
示例7: tconv_layer
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def tconv_layer(inputs,
filters=32,
kernel_size=3,
strides=2,
postfix=None):
"""Helper function to build Conv2DTranspose-BN-ReLU
layer
"""
x = Conv2DTranspose(filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
kernel_initializer='he_normal',
name='tconv_'+postfix)(inputs)
x = BatchNormalization(name="bn_"+postfix)(x)
x = Activation('relu', name='relu_'+postfix)(x)
return x
示例8: buildModel
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def buildModel(patchShape, numClasses):
input = Input(shape=patchShape)
n_base_fileter = 32
_handle_data_format()
conv = Conv3D(filters=n_base_fileter, kernel_size=(7, 7, 7),
strides=(2, 2, 2), kernel_initializer="he_normal",
)(input)
norm = BatchNormalization(axis=CHANNEL_AXIS)(conv)
conv1 = Activation("relu")(norm)
pool1 = MaxPooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2),
padding="same")(conv1)
flatten1 = Flatten()(pool1)
dense = Dense(units=numClasses,
kernel_initializer="he_normal",
activation="softmax",
kernel_regularizer=l2(1e-4))(flatten1)
model = Model(inputs=input, outputs=dense)
return model
示例9: expanding_layer_2D
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def expanding_layer_2D(input, neurons, concatenate_link, ba_norm,
ba_norm_momentum):
up = concatenate([Conv2DTranspose(neurons, (2, 2), strides=(2, 2),
padding='same')(input), concatenate_link], axis=-1)
conv1 = Conv2D(neurons, (3, 3,), activation='relu', padding='same')(up)
if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
conc1 = concatenate([up, conv1], axis=-1)
conv2 = Conv2D(neurons, (3, 3), activation='relu', padding='same')(conc1)
if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
conc2 = concatenate([up, conv2], axis=-1)
return conc2
#-----------------------------------------------------#
# Subroutines 3D #
#-----------------------------------------------------#
# Create a contracting layer
示例10: expanding_layer_2D
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def expanding_layer_2D(input, neurons, concatenate_link, ba_norm,
ba_norm_momentum):
up = concatenate([Conv2DTranspose(neurons, (2, 2), strides=(2, 2),
padding='same')(input), concatenate_link], axis=-1)
conv1 = Conv2D(neurons, (3, 3,), activation='relu', padding='same')(up)
if ba_norm : conv1 = BatchNormalization(momentum=ba_norm_momentum)(conv1)
conv2 = Conv2D(neurons, (3, 3), activation='relu', padding='same')(conv1)
if ba_norm : conv2 = BatchNormalization(momentum=ba_norm_momentum)(conv2)
shortcut = Conv2D(neurons, (1, 1), activation='relu', padding="same")(up)
add_layer = add([shortcut, conv2])
return add_layer
#-----------------------------------------------------#
# Subroutines 3D #
#-----------------------------------------------------#
# Create a contracting layer
示例11: trans_conv3d_bn
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def trans_conv3d_bn(x, filters, num_row, num_col, num_z, padding='same', strides=(2, 2, 2), name=None):
'''
2D Transposed Convolutional layers
Arguments:
x {keras layer} -- input layer
filters {int} -- number of filters
num_row {int} -- number of rows in filters
num_col {int} -- number of columns in filters
num_z {int} -- length along z axis in filters
Keyword Arguments:
padding {str} -- mode of padding (default: {'same'})
strides {tuple} -- stride of convolution operation (default: {(2, 2, 2)})
name {str} -- name of the layer (default: {None})
Returns:
[keras layer] -- [output layer]
'''
x = Conv3DTranspose(filters, (num_row, num_col, num_z), strides=strides, padding=padding)(x)
x = BatchNormalization(axis=4, scale=False)(x)
return x
示例12: augmented_conv2d
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def augmented_conv2d(ip, filters, kernel_size=(3, 3), strides=(1, 1),
depth_k=0.2, depth_v=0.2, num_heads=8, relative_encodings=True):
"""
Builds an Attention Augmented Convolution block.
Args:
ip: keras tensor.
filters: number of output filters.
kernel_size: convolution kernel size.
strides: strides of the convolution.
depth_k: float or int. Number of filters for k.
Computes the number of filters for `v`.
If passed as float, computed as `filters * depth_k`.
depth_v: float or int. Number of filters for v.
Computes the number of filters for `k`.
If passed as float, computed as `filters * depth_v`.
num_heads: int. Number of attention heads.
Must be set such that `depth_k // num_heads` is > 0.
relative_encodings: bool. Whether to use relative
encodings or not.
Returns:
a keras tensor.
"""
# input_shape = K.int_shape(ip)
channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
depth_k, depth_v = _normalize_depth_vars(depth_k, depth_v, filters)
conv_out = _conv_layer(filters - depth_v, kernel_size, strides)(ip)
# Augmented Attention Block
qkv_conv = _conv_layer(2 * depth_k + depth_v, (1, 1), strides)(ip)
attn_out = AttentionAugmentation2D(depth_k, depth_v, num_heads, relative_encodings)(qkv_conv)
attn_out = _conv_layer(depth_v, kernel_size=(1, 1))(attn_out)
output = concatenate([conv_out, attn_out], axis=channel_axis)
output = BatchNormalization()(output)
return output
示例13: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def __init__(self, filters, size, padding='SAME', apply_batchnorm=True):
super(Downsample, self).__init__()
self.apply_batchnorm = apply_batchnorm
initializer = tf.random_normal_initializer(0., 0.02)
filters = int(filters)
self.conv1 = layers.Conv2D(filters,
(size, size),
strides=2,
padding=padding,
kernel_initializer=initializer,
use_bias=False)
if self.apply_batchnorm:
self.batchnorm = tf.keras.layers.BatchNormalization()
示例14: make_model
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def make_model(**kwargs) -> tf.keras.Model:
# Model is based on MicronNet: https://arxiv.org/abs/1804.00497v3
img_size = 48
NUM_CLASSES = 43
eps = 1e-6
inputs = Input(shape=(img_size, img_size, 3))
x = Conv2D(1, (1, 1), padding="same")(inputs)
x = BatchNormalization(epsilon=eps)(x)
x = Activation("relu")(x)
x = Conv2D(29, (5, 5), padding="same")(x)
x = BatchNormalization(epsilon=eps)(x)
x = Activation("relu")(x)
x = MaxPooling2D(pool_size=(3, 3), strides=2)(x)
x = Conv2D(59, (3, 3), padding="same")(x)
x = BatchNormalization(epsilon=eps)(x)
x = Activation("relu")(x)
x = MaxPooling2D(pool_size=(3, 3), strides=2)(x)
x = Conv2D(74, (3, 3), padding="same")(x)
x = BatchNormalization(epsilon=eps)(x)
x = Activation("relu")(x)
x = MaxPooling2D(pool_size=(3, 3), strides=2)(x)
x = Flatten()(x)
x = Dense(300)(x)
x = Activation("relu")(x)
x = BatchNormalization(epsilon=eps)(x)
x = Dense(300, activation="relu")(x)
predictions = Dense(NUM_CLASSES, activation="softmax")(x)
model = Model(inputs=inputs, outputs=predictions)
model.compile(
optimizer=tf.keras.optimizers.SGD(
lr=0.01, decay=1e-6, momentum=0.9, nesterov=True
),
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=["accuracy"],
)
return model
示例15: DenseLayerNet
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import BatchNormalization [as 别名]
def DenseLayerNet(inshape, layer_sizes, nb_labels=2, activation='relu', final_activation='softmax', dropout=None, batch_norm=None):
"""
A densenet that connects a set of dense layers to a classification
output.
if nb_labels is 0 assume it is a regression net and use linear activation
(if None specified)
"""
inputs = KL.Input(shape=inshape, name='input')
prev_layer = KL.Flatten(name='flat_inputs')(inputs)
# to prevent overfitting include some kernel and bias regularization
kreg = keras.regularizers.l1_l2(l1=1e-5, l2=1e-4)
breg = keras.regularizers.l2(1e-4)
# connect the list of dense layers to each other
for lno, layer_size in enumerate(layer_sizes):
prev_layer = KL.Dense(layer_size, name='dense%d' % lno, activation=activation,kernel_regularizer=kreg, bias_regularizer=breg)(prev_layer)
if dropout is not None:
prev_layer = KL.Dropout(dropout, name='dropout%d'%lno)(prev_layer)
if batch_norm is not None:
prev_layer = KL.BatchNormalization(name='BatchNorm%d'%lno)(prev_layer)
# tie the previous dense layer to a onehot encoded output layer
last_layer = KL.Dense(nb_labels, name='last_dense', activation=final_activation)(prev_layer)
model = keras.models.Model(inputs=inputs, outputs=last_layer)
return(model)
###############################################################################
# Helper function
###############################################################################