本文整理汇总了Python中tensorflow.keras.layers.Add方法的典型用法代码示例。如果您正苦于以下问题:Python layers.Add方法的具体用法?Python layers.Add怎么用?Python layers.Add使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.keras.layers
的用法示例。
在下文中一共展示了layers.Add方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_model
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def build_model(self,
input_dim,
hidden_units,
output_dim):
"""Build a simple MINE model
Arguments:
See class arguments.
"""
inputs1 = Input(shape=(input_dim), name="x")
inputs2 = Input(shape=(input_dim), name="y")
x1 = Dense(hidden_units)(inputs1)
x2 = Dense(hidden_units)(inputs2)
x = Add()([x1, x2])
x = Activation('relu', name="ReLU")(x)
outputs = Dense(output_dim, name="MI")(x)
inputs = [inputs1, inputs2]
self._model = Model(inputs,
outputs,
name='MINE')
self._model.summary()
示例2: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def __init__(self,
filters,
kernel_size,
norm_type="instance",
pad_type="constant",
**kwargs):
super(ResBlock, self).__init__(name="ResBlock")
padding = (kernel_size - 1) // 2
padding = (padding, padding)
self.model = tf.keras.models.Sequential()
self.model.add(get_padding(pad_type, padding))
self.model.add(Conv2D(filters, kernel_size))
self.model.add(get_norm(norm_type))
self.model.add(ReLU())
self.model.add(get_padding(pad_type, padding))
self.model.add(Conv2D(filters, kernel_size))
self.model.add(get_norm(norm_type))
self.add = Add()
示例3: __init__
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def __init__(self, filters, bottleneck_factor=2):
self.filters = filters
self.bottleneck_factor = bottleneck_factor
conv = partial(Conv2D, activation="relu", padding="same", use_bias=False)
self.identity_bn = BatchNormalization()
self.identity_1x1 = conv(filters, kernel_size=(1, 1))
self.bottleneck_1x1_bn = BatchNormalization()
self.bottleneck_1x1 = conv(filters // bottleneck_factor, kernel_size=(1, 1))
self.bottleneck_3x3_bn = BatchNormalization()
self.bottleneck_3x3 = conv(filters // bottleneck_factor, kernel_size=(3, 3))
self.expansion_1x1_bn = BatchNormalization()
self.expansion_1x1 = conv(filters, kernel_size=(1, 1))
self.residual_add_bn = BatchNormalization()
self.residual_add = Add()
示例4: build
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def build(self, hp, inputs=None):
inputs = nest.flatten(inputs)
if len(inputs) == 1:
return inputs
merge_type = self.merge_type or hp.Choice('merge_type',
['add', 'concatenate'],
default='add')
if not all([shape_compatible(input_node.shape, inputs[0].shape) for
input_node in inputs]):
new_inputs = []
for input_node in inputs:
new_inputs.append(Flatten().build(hp, input_node))
inputs = new_inputs
# TODO: Even inputs have different shape[-1], they can still be Add(
# ) after another layer. Check if the inputs are all of the same
# shape
if all([input_node.shape == inputs[0].shape for input_node in inputs]):
if merge_type == 'add':
return layers.Add(inputs)
return layers.Concatenate()(inputs)
示例5: pool
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def pool(inputs, outchannels, pool1, pool2,):
x1 = convblock(inputs, outchannels, 3)
x2 = convblock(inputs, outchannels, 3)
x2 = pool2(x2)
x = layers.Add()([x1, x2])
x = layers.Conv2D(outchannels, 3, padding='same')(x)
x = pool1(x)
y1 = convblock(inputs, outchannels, 3)
y2 = convblock(inputs, outchannels, 3)
y2 = pool1(y2)
y = layers.Add()([y1, y2])
y = layers.Conv2D(outchannels, 3, padding='same')(y)
y = pool2(y)
feat = layers.Add()([x, y])
feat = layers.Conv2D(outchannels, 3, padding='same')(feat)
feat = layers.BatchNormalization()(feat)
skip_x = layers.Conv2D(outchannels, 1, padding='same')(inputs)
skip_x = layers.BatchNormalization()(skip_x)
out = layers.Add()([skip_x, feat])
out = layers.ReLU(max_value=6)(out)
out = convblock(out, outchannels, 3)
return out
示例6: residual
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def residual(_x, out_dim, name, stride=1):
shortcut = _x
num_channels = K.int_shape(shortcut)[-1]
_x = ZeroPadding2D(padding=1, name=name + '.pad1')(_x)
_x = Conv2D(out_dim, 3, strides=stride, use_bias=False, name=name + '.conv1')(_x)
_x = BatchNormalization(epsilon=1e-5, name=name + '.bn1')(_x)
_x = Activation('relu', name=name + '.relu1')(_x)
_x = Conv2D(out_dim, 3, padding='same', use_bias=False, name=name + '.conv2')(_x)
_x = BatchNormalization(epsilon=1e-5, name=name + '.bn2')(_x)
if num_channels != out_dim or stride != 1:
shortcut = Conv2D(out_dim, 1, strides=stride, use_bias=False, name=name + '.shortcut.0')(
shortcut)
shortcut = BatchNormalization(epsilon=1e-5, name=name + '.shortcut.1')(shortcut)
_x = Add(name=name + '.add')([_x, shortcut])
_x = Activation('relu', name=name + '.relu')(_x)
return _x
示例7: resblock_body
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def resblock_body(x, num_filters, num_blocks, all_narrow=True):
'''A series of resblocks starting with a downsampling Convolution2D'''
# Darknet uses left and top padding instead of 'same' mode
x = ZeroPadding2D(((1,0),(1,0)))(x)
x = DarknetConv2D_BN_Mish(num_filters, (3,3), strides=(2,2))(x)
res_connection = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(x)
x = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(x)
for i in range(num_blocks):
y = compose(
DarknetConv2D_BN_Mish(num_filters//2, (1,1)),
DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (3,3)))(x)
x = Add()([x,y])
x = DarknetConv2D_BN_Mish(num_filters//2 if all_narrow else num_filters, (1,1))(x)
x = Concatenate()([x , res_connection])
return DarknetConv2D_BN_Mish(num_filters, (1,1))(x)
示例8: residual_block_id
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def residual_block_id(self,tensor, feature_n,name=None):
if name != None:
depconv_1 = DepthwiseConv2D(3,2,padding='same',name=name+"/dconv")(tensor)
conv_2 = Conv2D(feature_n,1,name=name+"/conv")(depconv_1)
else:
depconv_1 = DepthwiseConv2D(3,2,padding='same')(tensor)
conv_2 = Conv2D(feature_n,1)(depconv_1)
maxpool_1 = MaxPool2D(pool_size=(2,2),strides=(2,2),padding='same')(tensor)
conv_zeros = Conv2D(feature_n/2,2,strides=2,use_bias=False,kernel_initializer=tf.zeros_initializer())(tensor)
padding_1 = Concatenate(axis=-1)([maxpool_1,conv_zeros])#self.feature_padding(maxpool_1)
add = Add()([padding_1,conv_2])
relu = ReLU()(add)
return relu
#def feature_padding(self,tensor,channels_n=0):
# #pad = tf.keras.layers.ZeroPadding2D(((0,0),(0,0),(0,tensor.shape[3])))(tensor)
# return Concatenate(axis=3)([tensor,pad])
示例9: Bottleneck
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def Bottleneck(x, size, downsampe=False):
residual = x
out = conv(x, size, 1, padding_='valid')
out = BatchNormalization(epsilon=1e-5, momentum=0.1)(out)
out = Activation('relu')(out)
out = conv(out, size, 3)
out = BatchNormalization(epsilon=1e-5, momentum=0.1)(out)
out = Activation('relu')(out)
out = conv(out, size * 4, 1, padding_='valid')
out = BatchNormalization(epsilon=1e-5, momentum=0.1)(out)
if downsampe:
residual = conv(x, size * 4, 1, padding_='valid')
residual = BatchNormalization(epsilon=1e-5, momentum=0.1)(residual)
out = Add()([out, residual])
out = Activation('relu')(out)
return out
示例10: ResidualConvUnit
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def ResidualConvUnit(inputs,n_filters=256,kernel_size=3,name=''):
"""
A local residual unit designed to fine-tune the pretrained ResNet weights
Arguments:
inputs: The input tensor
n_filters: Number of output feature maps for each conv
kernel_size: Size of convolution kernel
Returns:
Output of local residual block
"""
net = ReLU(name=name+'relu1')(inputs)
net = Conv2D(n_filters, kernel_size, padding='same', name=name+'conv1', kernel_initializer=kern_init, kernel_regularizer=kern_reg)(net)
net = ReLU(name=name+'relu2')(net)
net = Conv2D(n_filters, kernel_size, padding='same', name=name+'conv2', kernel_initializer=kern_init, kernel_regularizer=kern_reg)(net)
net = Add(name=name+'sum')([net, inputs])
return net
示例11: get_multi_inputs_model
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def get_multi_inputs_model():
a = Input(shape=(10,))
b = Input(shape=(10,))
c = Add()([a, b])
c = Dense(1, activation='sigmoid', name='last_layer')(c)
m_multi = Model(inputs=[a, b], outputs=c)
return m_multi
示例12: center_pool
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def center_pool(inputs, outchannels):
x = convblock(inputs, outchannels, 3)
poolw = right_pool(left_pool(x))
y = convblock(inputs, outchannels, 3)
poolh = bottom_pool(top_pool(y))
pool = layers.Add()([poolw, poolh])
features = layers.Conv2D(outchannels, 3, padding='same')(pool)
features = layers.BatchNormalization()(features)
skip_x = layers.Conv2D(outchannels, 1, padding='same')(inputs)
skip_x = layers.BatchNormalization()(skip_x)
out = layers.Add()([skip_x, features])
out = layers.ReLU(max_value=6)(out)
out = convblock(out, outchannels, 3)
return out
示例13: res_layer1
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def res_layer1(inputs, outchannels):
x = convblock(inputs, int(outchannels/2), 1)
x = convblock(x, int(outchannels / 2), 3)
out = convblock(x, outchannels, 1)
skip_x = convblock(inputs, outchannels, 1)
out = layers.Add()([out, skip_x])
return out
示例14: upsample_module
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def upsample_module(inputs, out1, out2):
left, right = inputs
xl = res_layer0(left,out2)
xl = res_layer0(xl, out2)
xr = convblock(right, out1, 3)
xr = convblock(xr, out2, 3)
xr = layers.UpSampling2D()(xr)
out = layers.Add()([xl, xr])
return out
示例15: resblock_body
# 需要导入模块: from tensorflow.keras import layers [as 别名]
# 或者: from tensorflow.keras.layers import Add [as 别名]
def resblock_body(x, num_filters, num_blocks):
'''A series of resblocks starting with a downsampling Convolution2D'''
# Darknet uses left and top padding instead of 'same' mode
x = ZeroPadding2D(((1,0),(1,0)))(x)
x = DarknetConv2D_BN_Leaky(num_filters, (3,3), strides=(2,2))(x)
for i in range(num_blocks):
y = compose(
DarknetConv2D_BN_Leaky(num_filters//2, (1,1)),
DarknetConv2D_BN_Leaky(num_filters, (3,3)))(x)
x = Add()([x,y])
return x