当前位置: 首页>>代码示例>>Python>>正文


Python constraints.get方法代码示例

本文整理汇总了Python中tensorflow.keras.constraints.get方法的典型用法代码示例。如果您正苦于以下问题:Python constraints.get方法的具体用法?Python constraints.get怎么用?Python constraints.get使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras.constraints的用法示例。


在下文中一共展示了constraints.get方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def __init__(self,
                 ratio,
                 return_mask=False,
                 sigmoid_gating=False,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):
        super().__init__(**kwargs)
        self.ratio = ratio
        self.return_mask = return_mask
        self.sigmoid_gating = sigmoid_gating
        self.gating_op = K.sigmoid if self.sigmoid_gating else K.tanh
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:18,代码来源:topk_pool.py

示例2: __init__

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def __init__(self,
                 channels,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super().__init__(**kwargs)
        self.channels = channels
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:19,代码来源:global_pool.py

示例3: __init__

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def __init__(self,
                 k,
                 channels=None,
                 return_mask=False,
                 activation=None,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.k = k
        self.channels = channels
        self.return_mask = return_mask
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:20,代码来源:diff_pool.py

示例4: __init__

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def __init__(self,
                 channels,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):

        super().__init__(activity_regularizer=activity_regularizer, **kwargs)
        self.channels = channels
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.supports_masking = False 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:26,代码来源:graph_conv.py

示例5: convert_sequence_vocab

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def convert_sequence_vocab(self, sequence, sequence_lengths):
        PFAM_TO_UNIREP_ENCODED = {encoding: UNIREP_VOCAB.get(aa, 23) for aa, encoding in PFAM_VOCAB.items()}

        def to_uniprot_unirep(seq, seqlens):
            new_seq = np.zeros_like(seq)

            for pfam_encoding, unirep_encoding in PFAM_TO_UNIREP_ENCODED.items():
                new_seq[seq == pfam_encoding] = unirep_encoding

            # add start/stop
            new_seq = np.pad(new_seq, [[0, 0], [1, 1]], mode='constant')
            new_seq[:, 0] = UNIREP_VOCAB['<START>']
            new_seq[np.arange(new_seq.shape[0]), seqlens + 1] = UNIREP_VOCAB['<STOP>']

            return new_seq

        new_sequence = tf.py_func(to_uniprot_unirep, [sequence, sequence_lengths], sequence.dtype)
        new_sequence.set_shape([sequence.shape[0], sequence.shape[1] + 2])

        return new_sequence 
开发者ID:songlab-cal,项目名称:tape-neurips2019,代码行数:22,代码来源:UniRepModel.py

示例6: __init__

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def __init__(self,
                 activation: OptStrOrCallable = None,
                 use_bias: bool = True,
                 kernel_initializer: OptStrOrCallable = 'glorot_uniform',
                 bias_initializer: OptStrOrCallable = 'zeros',
                 kernel_regularizer: OptStrOrCallable = None,
                 bias_regularizer: OptStrOrCallable = None,
                 activity_regularizer: OptStrOrCallable = None,
                 kernel_constraint: OptStrOrCallable = None,
                 bias_constraint: OptStrOrCallable = None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        self.activation = activations.get(activation)  # noqa
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        super().__init__(**kwargs) 
开发者ID:materialsvirtuallab,项目名称:megnet,代码行数:25,代码来源:base.py

示例7: call

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def call(self, inputs):
        def brelu(x):
            # get shape of X, we are interested in the last axis, which is constant
            shape = K.int_shape(x)
            # last axis
            dim = shape[-1]
            # half of the last axis (+1 if necessary)
            dim2 = dim // 2
            if dim % 2 != 0:
                dim2 += 1
            # multiplier will be a tensor of alternated +1 and -1
            multiplier = K.ones((dim2,))
            multiplier = K.stack([multiplier, -multiplier], axis=-1)
            if dim % 2 != 0:
                multiplier = multiplier[:-1]
            # adjust multiplier shape to the shape of x
            multiplier = K.reshape(multiplier, tuple(1 for _ in shape[:-1]) + (-1,))
            return multiplier * tf.nn.relu(multiplier * x)

        return Lambda(brelu)(inputs) 
开发者ID:digantamisra98,项目名称:Echo,代码行数:22,代码来源:custom_activation.py

示例8: __init__

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def __init__(self,
                 filters,
                 kernel_size,
                 strides=1,
                 padding='valid',
                 dilation_rate=1,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 demod=True,
                 **kwargs):
        super(Conv2DMod, self).__init__(**kwargs)
        self.filters = filters
        self.rank = 2
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, 2, 'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.demod = demod
        self.input_spec = [InputSpec(ndim = 4),
                            InputSpec(ndim = 2)] 
开发者ID:manicman1999,项目名称:StyleGAN2-Tensorflow-2.0,代码行数:28,代码来源:conv_mod.py

示例9: deserialize_kwarg

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def deserialize_kwarg(key, attr):
    if key.endswith('_initializer'):
        return initializers.get(attr)
    if key.endswith('_regularizer'):
        return regularizers.get(attr)
    if key.endswith('_constraint'):
        return constraints.get(attr)
    if key == 'activation':
        return activations.get(attr) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:11,代码来源:keras.py

示例10: __init__

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def __init__(self,
                 trainable_kernel=False,
                 activation=None,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.trainable_kernel = trainable_kernel
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:16,代码来源:base.py

示例11: __init__

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def __init__(self,
                 k,
                 mlp_hidden=None,
                 mlp_activation='relu',
                 return_mask=False,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.k = k
        self.mlp_hidden = mlp_hidden if mlp_hidden else []
        self.mlp_activation = mlp_activation
        self.return_mask = return_mask
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:30,代码来源:mincut_pool.py

示例12: __init__

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def __init__(self,
                 groups=4,
                 axis=-1,
                 epsilon=1e-5,
                 center=True,
                 scale=True,
                 beta_initializer="zeros",
                 gamma_initializer="ones",
                 beta_regularizer=None,
                 gamma_regularizer=None,
                 beta_constraint=None,
                 gamma_constraint=None,
                 **kwargs):
        super(GroupNormalization, self).__init__(**kwargs)
        self.supports_masking = True
        self.groups = groups
        self.axis = axis
        self.epsilon = epsilon
        self.center = center
        self.scale = scale
        self.beta_initializer = initializers.get(beta_initializer)
        self.gamma_initializer = initializers.get(gamma_initializer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_constraint = constraints.get(beta_constraint)
        self.gamma_constraint = constraints.get(gamma_constraint) 
开发者ID:sandialabs,项目名称:bcnn,代码行数:28,代码来源:groupnorm.py

示例13: __init__

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def __init__(self,
                 kernel_size,
                 strides=(1, 1),
                 padding='valid',
                 depth_multiplier=1,
                 data_format=None,
                 activation=None,
                 use_bias=True,
                 depthwise_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 depthwise_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 depthwise_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(DepthwiseConv2D, self).__init__(
            filters=None,
            kernel_size=kernel_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            activation=activation,
            use_bias=use_bias,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer,
            bias_constraint=bias_constraint,
            **kwargs)
        self.depth_multiplier = depth_multiplier
        self.depthwise_initializer = initializers.get(depthwise_initializer)
        self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
        self.depthwise_constraint = constraints.get(depthwise_constraint)
        self.bias_initializer = initializers.get(bias_initializer)
        self.depthwise_kernel = None
        self.bias = None 
开发者ID:titu1994,项目名称:keras-squeeze-excite-network,代码行数:37,代码来源:se_mobilenets.py

示例14: get_auto_range_constraint_initializer

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def get_auto_range_constraint_initializer(quantizer, constraint, initializer):
  """Get value range automatically for quantizer.

  Arguments:
   quantizer: A quantizer class in quantizers.py.
   constraint: A tf.keras constraint.
   initializer: A tf.keras initializer.

  Returns:
    a tuple (constraint, initializer), where
      constraint is clipped by Clip class in this file, based on the
      value range of quantizer.
      initializer is initializer contraint by value range of quantizer.
  """
  if quantizer is not None:
    # let's use now symmetric clipping function
    max_value = max(1, quantizer.max()) if hasattr(quantizer, "max") else 1.0
    min_value = quantizer.min() if hasattr(quantizer, "min") else -1.0

    if constraint:
      constraint = constraints.get(constraint)

    constraint = Clip(-max_value, max_value, constraint, quantizer)
    initializer = initializers.get(initializer)
    if initializer and initializer.__class__.__name__ not in ["Ones", "Zeros"]:
      # we want to get the max value of the quantizer that depends
      # on the distribution and scale
      if not (hasattr(quantizer, "alpha") and
              isinstance(quantizer.alpha, six.string_types)):
        initializer = QInitializer(
            initializer, use_scale=True, quantizer=quantizer)
  return constraint, initializer 
开发者ID:google,项目名称:qkeras,代码行数:34,代码来源:qlayers.py

示例15: get_config

# 需要导入模块: from tensorflow.keras import constraints [as 别名]
# 或者: from tensorflow.keras.constraints import get [as 别名]
def get_config(self):
    return {
        "initializer": self.initializer,
        "use_scale": self.use_scale,
        "quantizer": self.quantizer,
    }


#
# Because it may be hard to get serialization from activation functions,
# we may be replacing their instantiation by QActivation in the future.
# 
开发者ID:google,项目名称:qkeras,代码行数:14,代码来源:qlayers.py


注:本文中的tensorflow.keras.constraints.get方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。