本文整理汇总了Python中tensorflow.keras.callbacks.ModelCheckpoint方法的典型用法代码示例。如果您正苦于以下问题:Python callbacks.ModelCheckpoint方法的具体用法?Python callbacks.ModelCheckpoint怎么用?Python callbacks.ModelCheckpoint使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.keras.callbacks
的用法示例。
在下文中一共展示了callbacks.ModelCheckpoint方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def train(weights_path, epochs, batch_size, initial_epoch,
kl_start_epoch, kl_alpha_increase_per_epoch):
"""Trains a model."""
print ('loading data...')
# Loads or creates training data.
input_shape, train, valid, train_targets, valid_targets = get_train_data()
print ('getting model...')
# Loads or creates model.
model, checkpoint_path, kl_alpha = get_model(input_shape,
scale_factor=len(train)/batch_size,
weights_path=weights_path)
# Sets callbacks.
checkpointer = ModelCheckpoint(checkpoint_path, verbose=1,
save_weights_only=True, save_best_only=True)
scheduler = LearningRateScheduler(schedule)
annealer = Callback() if kl_alpha is None else AnnealingCallback(kl_alpha, kl_start_epoch, kl_alpha_increase_per_epoch)
print ('fitting model...')
# Trains model.
model.fit(train, train_targets, batch_size, epochs,
initial_epoch=initial_epoch,
callbacks=[checkpointer, scheduler, annealer],
validation_data=(valid, valid_targets))
示例2: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def train(self, batch_size=512, epochs=20):
model = self.build_model()
# early_stop配合checkpoint使用,可以得到val_loss最小的模型
early_stop = EarlyStopping(patience=3, verbose=1)
checkpoint = ModelCheckpoint(os.path.join(self.model_path, 'weights.{epoch:03d}-{val_loss:.3f}.h5'),
verbose=1,
monitor='val_loss',
save_best_only=True)
history = model.fit(self.x_train,
self.y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
callbacks=[checkpoint, early_stop],
validation_data=(self.x_test, self.y_test))
plot(history)
return model
示例3: main
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def main():
model = create_model(trainable=TRAINABLE)
model.summary()
if TRAINABLE:
model.load_weights(WEIGHTS)
train_datagen = DataGenerator(TRAIN_CSV)
validation_datagen = Validation(generator=DataGenerator(VALIDATION_CSV))
optimizer = Adam(lr=1e-4, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
model.compile(loss=loss, optimizer=optimizer, metrics=[])
checkpoint = ModelCheckpoint("model-{val_dice:.2f}.h5", monitor="val_dice", verbose=1, save_best_only=True,
save_weights_only=True, mode="max")
stop = EarlyStopping(monitor="val_dice", patience=PATIENCE, mode="max")
reduce_lr = ReduceLROnPlateau(monitor="val_dice", factor=0.2, patience=5, min_lr=1e-6, verbose=1, mode="max")
model.fit_generator(generator=train_datagen,
epochs=EPOCHS,
callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
workers=THREADS,
use_multiprocessing=MULTI_PROCESSING,
shuffle=True,
verbose=1)
示例4: main
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def main():
model = create_model()
train_datagen = DataGenerator(TRAIN_CSV)
validation_datagen = Validation(generator=DataGenerator(VALIDATION_CSV))
optimizer = Adam(lr=1e-3, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
model.compile(loss={"coords" : log_mse, "classes" : focal_loss()}, loss_weights={"coords" : 1, "classes" : 1}, optimizer=optimizer, metrics=[])
checkpoint = ModelCheckpoint("model-{val_iou:.2f}.h5", monitor="val_iou", verbose=1, save_best_only=True,
save_weights_only=True, mode="max")
stop = EarlyStopping(monitor="val_iou", patience=PATIENCE, mode="max")
reduce_lr = ReduceLROnPlateau(monitor="val_iou", factor=0.2, patience=10, min_lr=1e-7, verbose=1, mode="max")
model.summary()
model.fit_generator(generator=train_datagen,
epochs=EPOCHS,
callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
workers=THREADS,
use_multiprocessing=MULTI_PROCESSING,
shuffle=True,
verbose=1)
示例5: main
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def main():
model = create_model()
model.summary()
train_datagen = DataGenerator(TRAIN_CSV)
validation_datagen = Validation(generator=DataGenerator(VALIDATION_CSV))
model.compile(loss="mean_squared_error", optimizer="adam", metrics=[])
checkpoint = ModelCheckpoint("model-{val_iou:.2f}.h5", monitor="val_iou", verbose=1, save_best_only=True,
save_weights_only=True, mode="max")
stop = EarlyStopping(monitor="val_iou", patience=PATIENCE, mode="max")
reduce_lr = ReduceLROnPlateau(monitor="val_iou", factor=0.2, patience=10, min_lr=1e-7, verbose=1, mode="max")
model.fit_generator(generator=train_datagen,
epochs=EPOCHS,
callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
workers=THREADS,
use_multiprocessing=MULTI_PROCESSING,
shuffle=True,
verbose=1)
示例6: fit_model
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def fit_model(dsm: DeepSpeakerModel, working_dir: str, max_length: int = NUM_FRAMES, batch_size=BATCH_SIZE):
batcher = LazyTripletBatcher(working_dir, max_length, dsm)
# build small test set.
test_batches = []
for _ in tqdm(range(200), desc='Build test set'):
test_batches.append(batcher.get_batch_test(batch_size))
def test_generator():
while True:
for bb in test_batches:
yield bb
def train_generator():
while True:
yield batcher.get_random_batch(batch_size, is_test=False)
checkpoint_name = dsm.m.name + '_checkpoint'
checkpoint_filename = os.path.join(CHECKPOINTS_TRIPLET_DIR, checkpoint_name + '_{epoch}.h5')
checkpoint = ModelCheckpoint(monitor='val_loss', filepath=checkpoint_filename, save_best_only=True)
dsm.m.fit(x=train_generator(), y=None, steps_per_epoch=2000, shuffle=False,
epochs=1000, validation_data=test_generator(), validation_steps=len(test_batches),
callbacks=[checkpoint])
示例7: __init__
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def __init__(
self,
filepath,
monitor="val_loss",
verbose=0,
save_best_only=True,
mode="auto",
save_freq="epoch",
**kwargs
):
super(ModelCheckpoint, self).__init__(
filepath=filepath,
monitor=monitor,
verbose=verbose,
save_best_only=save_best_only,
mode=mode,
save_freq=save_freq,
**kwargs
)
示例8: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def train(self, weights_only=True, call_back=False):
model = self._build_model()
if call_back:
early_stopping = EarlyStopping(monitor='val_loss', patience=30)
stamp = 'lstm_%d' % self.n_hidden
checkpoint_dir = os.path.join(
self.model_path, 'checkpoints/' + str(int(time.time())) + '/')
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
bst_model_path = checkpoint_dir + stamp + '.h5'
if weights_only:
model_checkpoint = ModelCheckpoint(
bst_model_path, save_best_only=True, save_weights_only=True)
else:
model_checkpoint = ModelCheckpoint(
bst_model_path, save_best_only=True)
tensor_board = TensorBoard(
log_dir=checkpoint_dir + "logs/{}".format(time.time()))
callbacks = [early_stopping, model_checkpoint, tensor_board]
else:
callbacks = None
model_trained = model.fit([self.x_train['left'], self.x_train['right']],
self.y_train,
batch_size=self.batch_size,
epochs=self.epochs,
validation_data=([self.x_val['left'], self.x_val['right']], self.y_val),
verbose=1,
callbacks=callbacks)
if weights_only and not call_back:
model.save_weights(os.path.join(self.model_path, 'weights_only.h5'))
elif not weights_only and not call_back:
model.save(os.path.join(self.model_path, 'model.h5'))
self._save_config()
plot(model_trained)
return model
示例9: main
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def main():
model = create_model(trainable=TRAINABLE)
model.summary()
if TRAINABLE:
model.load_weights(WEIGHTS)
train_datagen = DataGenerator(TRAIN_CSV)
val_generator = DataGenerator(VALIDATION_CSV, rnd_rescale=False, rnd_multiply=False, rnd_crop=False, rnd_flip=False, debug=False)
validation_datagen = Validation(generator=val_generator)
learning_rate = LEARNING_RATE
if TRAINABLE:
learning_rate /= 10
optimizer = SGD(lr=learning_rate, decay=LR_DECAY, momentum=0.9, nesterov=False)
model.compile(loss=detection_loss(), optimizer=optimizer, metrics=[])
checkpoint = ModelCheckpoint("model-{val_iou:.2f}.h5", monitor="val_iou", verbose=1, save_best_only=True,
save_weights_only=True, mode="max")
stop = EarlyStopping(monitor="val_iou", patience=PATIENCE, mode="max")
reduce_lr = ReduceLROnPlateau(monitor="val_iou", factor=0.6, patience=5, min_lr=1e-6, verbose=1, mode="max")
model.fit_generator(generator=train_datagen,
epochs=EPOCHS,
callbacks=[validation_datagen, checkpoint, reduce_lr, stop],
workers=THREADS,
use_multiprocessing=MULTITHREADING,
shuffle=True,
verbose=1)
示例10: fit_model_softmax
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def fit_model_softmax(dsm: DeepSpeakerModel, kx_train, ky_train, kx_test, ky_test,
batch_size=BATCH_SIZE, max_epochs=1000, initial_epoch=0):
checkpoint_name = dsm.m.name + '_checkpoint'
checkpoint_filename = os.path.join(CHECKPOINTS_SOFTMAX_DIR, checkpoint_name + '_{epoch}.h5')
checkpoint = ModelCheckpoint(monitor='val_accuracy', filepath=checkpoint_filename, save_best_only=True)
# if the accuracy does not increase by 0.1% over 20 epochs, we stop the training.
early_stopping = EarlyStopping(monitor='val_accuracy', min_delta=0.001, patience=20, verbose=1, mode='max')
# if the accuracy does not increase over 10 epochs, we reduce the learning rate by half.
reduce_lr = ReduceLROnPlateau(monitor='val_accuracy', factor=0.5, patience=10, min_lr=0.0001, verbose=1)
max_len_train = len(kx_train) - len(kx_train) % batch_size
kx_train = kx_train[0:max_len_train]
ky_train = ky_train[0:max_len_train]
max_len_test = len(kx_test) - len(kx_test) % batch_size
kx_test = kx_test[0:max_len_test]
ky_test = ky_test[0:max_len_test]
dsm.m.fit(x=kx_train,
y=ky_train,
batch_size=batch_size,
epochs=initial_epoch + max_epochs,
initial_epoch=initial_epoch,
verbose=1,
shuffle=True,
validation_data=(kx_test, ky_test),
callbacks=[early_stopping, reduce_lr, checkpoint])
示例11: get_callbacks
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def get_callbacks(model_file, logging_file=None, early_stopping_patience=None,
initial_learning_rate=0.01, lr_change_mode=None, verbosity=1):
callbacks = list()
# save the model
callbacks.append(ModelCheckpoint(model_file, monitor='val_loss', save_best_only=True, mode='auto'))
# records the basic metrics
callbacks.append(CSVLogger(logging_file, append=True))
return callbacks
示例12: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def train(args):
model = SegNet()
modelcheck = ModelCheckpoint(args['model'],monitor='val_acc',save_best_only=True,mode='max')
callable = [modelcheck,tf.keras.callbacks.TensorBoard(log_dir='.')]
train_set,val_set = get_train_val()
train_numb = len(train_set)
valid_numb = len(val_set)
print ("the number of train data is",train_numb)
print ("the number of val data is",valid_numb)
H = model.fit(x=generateData(BS,train_set),steps_per_epoch=(train_numb//BS),epochs=EPOCHS,verbose=2,
validation_data=generateValidData(BS,val_set),validation_steps=(valid_numb//BS),callbacks=callable)
# plot the training loss and accuracy
plt.style.use("ggplot")
plt.figure()
N = EPOCHS
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy on SegNet Satellite Seg")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="lower left")
plt.savefig(args["plot"])
#获取参数
示例13: run_fold
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def run_fold(fold, model, epochs=20, iterations=None,
evaluation_path="evaluation", draw_figures=True, callbacks=[],
save_models=True):
# Load sampling fold from disk
fold_path = os.path.join(evaluation_path, "fold_" + str(fold),
"sample_list.csv")
training, validation = load_csv2fold(fold_path)
# Reset Neural Network model weights
model.reset_weights()
# Initialize evaluation subdirectory for current fold
subdir = os.path.join(evaluation_path, "fold_" + str(fold))
# Save model for each fold
cb_model = ModelCheckpoint(os.path.join(subdir, "model.hdf5"),
monitor="val_loss", verbose=1,
save_best_only=True, mode="min")
if save_models == True : cb_list = callbacks + [cb_model]
else : cb_list = callbacks
# Run training & validation
history = model.evaluate(training, validation, epochs=epochs,
iterations=iterations, callbacks=cb_list)
# Backup current history dictionary
backup_history(history.history, subdir)
# Draw plots for the training & validation
if draw_figures:
plot_validation(history.history, model.metrics, subdir)
#-----------------------------------------------------#
# CSV Management #
#-----------------------------------------------------#
# Subfunction for writing a fold sampling to disk
示例14: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def train(self, training_data, cfg, **kwargs):
classifier_model = eval("clf." + self.classifier_model)
epochs = self.component_config.get('epochs')
batch_size = self.component_config.get('batch_size')
validation_split = self.component_config.get('validation_split')
patience = self.component_config.get('patience')
factor = self.component_config.get('factor')
verbose = self.component_config.get('verbose')
X, Y = [], []
for msg in training_data.intent_examples:
X.append(self.tokenizer.tokenize(msg.text))
Y.append(msg.get('intent'))
train_x, validate_x, train_y, validate_y = train_test_split( X, Y, test_size=validation_split, random_state=100)
self.bert_embedding.processor.add_bos_eos = False
self.model = classifier_model(self.bert_embedding)
checkpoint = ModelCheckpoint(
'intent_weights.h5',
monitor='val_loss',
save_best_only=True,
save_weights_only=False,
verbose=verbose)
early_stopping = EarlyStopping(
monitor='val_loss',
patience=patience)
reduce_lr = ReduceLROnPlateau(
monitor='val_loss',
factor=factor,
patience=patience,
verbose=verbose)
self.model.fit(
train_x,
train_y,
validate_x,
validate_y,
epochs=epochs,
batch_size=batch_size,
callbacks=[checkpoint, early_stopping, reduce_lr]
)
示例15: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import ModelCheckpoint [as 别名]
def train(self, training_data, cfg, **kwargs):
labeling_model = eval("labeling." + self.labeling_model)
epochs = self.component_config.get('epochs')
batch_size = self.component_config.get('batch_size')
validation_split = self.component_config.get('validation_split')
patience = self.component_config.get('patience')
factor = self.component_config.get('factor')
verbose = self.component_config.get('verbose')
filtered_entity_examples = self.filter_trainable_entities(training_data.training_examples)
X, Y = self._create_dataset(filtered_entity_examples)
train_x, validate_x, train_y, validate_y = train_test_split( X, Y, test_size=validation_split, random_state=100)
self.model = labeling_model(self.bert_embedding)
checkpoint = ModelCheckpoint(
'entity_weights.h5',
monitor='val_loss',
save_best_only=True,
save_weights_only=False,
verbose=verbose)
early_stopping = EarlyStopping(
monitor='val_loss',
patience=patience)
reduce_lr = ReduceLROnPlateau(
monitor='val_loss',
factor=factor,
patience=patience,
verbose=verbose)
self.model.fit(
train_x,
train_y,
validate_x,
validate_y,
epochs=epochs,
batch_size=batch_size,
callbacks=[checkpoint, early_stopping, reduce_lr]
)