本文整理汇总了Python中tensorflow.keras.callbacks.LearningRateScheduler方法的典型用法代码示例。如果您正苦于以下问题:Python callbacks.LearningRateScheduler方法的具体用法?Python callbacks.LearningRateScheduler怎么用?Python callbacks.LearningRateScheduler使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.keras.callbacks
的用法示例。
在下文中一共展示了callbacks.LearningRateScheduler方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import LearningRateScheduler [as 别名]
def train(weights_path, epochs, batch_size, initial_epoch,
kl_start_epoch, kl_alpha_increase_per_epoch):
"""Trains a model."""
print ('loading data...')
# Loads or creates training data.
input_shape, train, valid, train_targets, valid_targets = get_train_data()
print ('getting model...')
# Loads or creates model.
model, checkpoint_path, kl_alpha = get_model(input_shape,
scale_factor=len(train)/batch_size,
weights_path=weights_path)
# Sets callbacks.
checkpointer = ModelCheckpoint(checkpoint_path, verbose=1,
save_weights_only=True, save_best_only=True)
scheduler = LearningRateScheduler(schedule)
annealer = Callback() if kl_alpha is None else AnnealingCallback(kl_alpha, kl_start_epoch, kl_alpha_increase_per_epoch)
print ('fitting model...')
# Trains model.
model.fit(train, train_targets, batch_size, epochs,
initial_epoch=initial_epoch,
callbacks=[checkpointer, scheduler, annealer],
validation_data=(valid, valid_targets))
示例2: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import LearningRateScheduler [as 别名]
def train(lambd, sigma, n_centers, trial):
K.clear_session()
(X_train, y_train), (X_test, y_test) = inbalanced_cifar(200)
model = create_models(sigma, n_centers)
model.compile("adam", affinity_loss(lambd), [acc])
tf.logging.set_verbosity(tf.logging.FATAL) # ログを埋めないようにする
tpu_grpc_url = "grpc://"+os.environ["COLAB_TPU_ADDR"]
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(tpu_grpc_url)
strategy = keras_support.TPUDistributionStrategy(tpu_cluster_resolver)
model = tf.contrib.tpu.keras_to_tpu_model(model, strategy=strategy)
scheduler = LearningRateScheduler(step_decay)
f1 = F1Callback(model, X_test, y_test, trial)
history = model.fit(X_train, y_train, callbacks=[scheduler, f1],
batch_size=640, epochs=100, verbose=0).history
max_f1 = max(f1.f1_log)
print(f"lambda:{lambd:.04}, sigma:{sigma:.04} n_centers:{n_centers} / f1 = {max_f1:.04}")
return max_f1
示例3: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import LearningRateScheduler [as 别名]
def train(inbalance_size):
(X_train, y_train), (X_test, y_test) = inbalanced_cifar(inbalance_size)
y_train, y_test = y_train[:, :10], y_test[:, :10]
model = create_models()
model.compile("adam", "categorical_crossentropy", ["acc"])
tf.logging.set_verbosity(tf.logging.FATAL)
tpu_grpc_url = "grpc://"+os.environ["COLAB_TPU_ADDR"]
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(tpu_grpc_url)
strategy = keras_support.TPUDistributionStrategy(tpu_cluster_resolver)
model = tf.contrib.tpu.keras_to_tpu_model(model, strategy=strategy)
scheduler = LearningRateScheduler(step_decay)
f1 = F1Callback(model, X_test, y_test)
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), callbacks=[scheduler, f1],
batch_size=640, epochs=100, verbose=0).history
max_acc = max(history["val_acc"])
max_f1 = max(f1.f1_log)
print(f"{inbalance_size} {max_acc:.04} {max_f1:.04}")
示例4: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import LearningRateScheduler [as 别名]
def train(inbalance_size):
(X_train, y_train), (X_test, y_test) = inbalanced_cifar(inbalance_size)
model = create_models()
model.compile("adam", affinity_loss(0.43), [acc])
tf.logging.set_verbosity(tf.logging.FATAL)
tpu_grpc_url = "grpc://"+os.environ["COLAB_TPU_ADDR"]
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(tpu_grpc_url)
strategy = keras_support.TPUDistributionStrategy(tpu_cluster_resolver)
model = tf.contrib.tpu.keras_to_tpu_model(model, strategy=strategy)
scheduler = LearningRateScheduler(step_decay)
f1 = F1Callback(model, X_test, y_test)
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), callbacks=[scheduler, f1],
batch_size=640, epochs=100, verbose=0).history
max_acc = max(history["val_acc"])
max_f1 = max(f1.f1_log)
print(f"{inbalance_size} {max_acc:.04} {max_f1:.04}")
示例5: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import LearningRateScheduler [as 别名]
def train(self):
"""Train an FCN"""
optimizer = Adam(lr=1e-3)
loss = 'categorical_crossentropy'
self.fcn.compile(optimizer=optimizer, loss=loss)
log = "# of classes %d" % self.n_classes
print_log(log, self.args.verbose)
log = "Batch size: %d" % self.args.batch_size
print_log(log, self.args.verbose)
# prepare callbacks for saving model weights
# and learning rate scheduler
# model weights are saved when test iou is highest
# learning rate decreases by 50% every 20 epochs
# after 40th epoch
accuracy = AccuracyCallback(self)
scheduler = LearningRateScheduler(lr_scheduler)
callbacks = [accuracy, scheduler]
# train the fcn network
self.fcn.fit(x=self.train_generator,
use_multiprocessing=False,
callbacks=callbacks,
epochs=self.args.epochs)
#workers=self.args.workers)
示例6: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import LearningRateScheduler [as 别名]
def train(self):
"""Train function uses the data generator,
accuracy computation, and learning rate
scheduler callbacks
"""
accuracy = AccuracyCallback(self)
lr_scheduler = LearningRateScheduler(lr_schedule,
verbose=1)
callbacks = [accuracy, lr_scheduler]
self._model.fit(x=self.train_gen,
use_multiprocessing=False,
epochs=self.args.epochs,
callbacks=callbacks,
shuffle=True)
示例7: train
# 需要导入模块: from tensorflow.keras import callbacks [as 别名]
# 或者: from tensorflow.keras.callbacks import LearningRateScheduler [as 别名]
def train(self):
"""Train MINE to estimate MI between
X and Y (eg MNIST image and its transformed
version)
"""
accuracy = AccuracyCallback(self)
lr_scheduler = LearningRateScheduler(lr_schedule,
verbose=1)
callbacks = [accuracy, lr_scheduler]
self._model.fit(x=self.train_gen,
use_multiprocessing=False,
epochs=self.args.epochs,
callbacks=callbacks,
shuffle=True)