当前位置: 首页>>代码示例>>Python>>正文


Python backend.tile方法代码示例

本文整理汇总了Python中tensorflow.keras.backend.tile方法的典型用法代码示例。如果您正苦于以下问题:Python backend.tile方法的具体用法?Python backend.tile怎么用?Python backend.tile使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras.backend的用法示例。


在下文中一共展示了backend.tile方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: expand_tile

# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import tile [as 别名]
def expand_tile(units, axis):
    """
    Expand and tile tensor along given axis

    Args:
        units: tf tensor with dimensions [batch_size, time_steps, n_input_features]
        axis: axis along which expand and tile. Must be 1 or 2

    """
    assert axis in (1, 2)
    n_time_steps = K.int_shape(units)[1]
    repetitions = [1, 1, 1, 1]
    repetitions[axis] = n_time_steps
    if axis == 1:
        expanded = Reshape(target_shape=((1,) + K.int_shape(units)[1:]))(units)
    else:
        expanded = Reshape(target_shape=(K.int_shape(units)[1:2] + (1,) + K.int_shape(units)[2:]))(units)
    return K.tile(expanded, repetitions) 
开发者ID:deepmipt,项目名称:DeepPavlov,代码行数:20,代码来源:keras_layers.py

示例2: relative_logits_1d

# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import tile [as 别名]
def relative_logits_1d(self, q, rel_k, H, W, transpose_mask):
        rel_logits = tf.einsum('bhxyd,md->bhxym', q, rel_k)
        rel_logits = K.reshape(rel_logits, [-1, self.num_heads * H, W, 2 * W - 1])
        rel_logits = self.rel_to_abs(rel_logits)
        rel_logits = K.reshape(rel_logits, [-1, self.num_heads, H, W, W])
        rel_logits = K.expand_dims(rel_logits, axis=3)
        rel_logits = K.tile(rel_logits, [1, 1, 1, H, 1, 1])
        rel_logits = K.permute_dimensions(rel_logits, transpose_mask)
        rel_logits = K.reshape(rel_logits, [-1, self.num_heads, H * W, H * W])
        return rel_logits 
开发者ID:titu1994,项目名称:keras-attention-augmented-convs,代码行数:12,代码来源:attn_augconv.py

示例3: call

# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import tile [as 别名]
def call(self, inputs, mask=None):
        """
        convert to query, key, value vectors, shaped [batch_size*num_head, time_step, embed_dim]
        """
        multihead_query = K.concatenate(tf.split(K.dot(inputs, self.w_q),
                                                 self.num_heads, axis=2), axis=0)
        multihead_key = K.concatenate(tf.split(K.dot(inputs, self.w_k),
                                               self.num_heads, axis=2), axis=0)
        multihead_value = K.concatenate(tf.split(K.dot(inputs, self.w_v),
                                                 self.num_heads, axis=2), axis=0)

        """scaled dot product"""
        scaled = K.int_shape(inputs)[-1] ** -0.5
        attend = K.batch_dot(multihead_query, multihead_key, axes=2) * scaled
        # apply mask before normalization (softmax)
        if mask is not None:
            multihead_mask = K.tile(mask, [self.num_heads, 1])
            attend *= K.expand_dims(K.cast(multihead_mask, K.floatx()), 2)
            attend *= K.expand_dims(K.cast(multihead_mask, K.floatx()), 1)
        # normalization
        attend = attend / K.cast(K.sum(attend, axis=-1, keepdims=True) + K.epsilon(), K.floatx())
        # apply attention
        attend = K.batch_dot(attend, multihead_value, axes=(2, 1))
        attend = tf.concat(tf.split(attend, self.num_heads, axis=0), axis=2)
        attend = K.dot(attend, self.w_final)

        if self.residual:
            attend = attend + inputs
        if self.normalize:
            mean = K.mean(attend, axis=-1, keepdims=True)
            std = K.mean(attend, axis=-1, keepdims=True)
            attend = self.gamma * (attend - mean) / (std + K.epsilon()) + self.beta

        return attend 
开发者ID:boat-group,项目名称:fancy-nlp,代码行数:36,代码来源:attention.py

示例4: repeat_

# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import tile [as 别名]
def repeat_(x, k):
    tile_factor = [1, k] + [1] * (K.ndim(x) - 1)
    return K.tile(x[:, None, :], tile_factor) 
开发者ID:deepmipt,项目名称:DeepPavlov,代码行数:5,代码来源:common_tagger.py

示例5: call

# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import tile [as 别名]
def call(self, inputs, **kwargs):
        assert isinstance(inputs, list) and len(inputs) == 3
        first, second, features = inputs[0], inputs[1], inputs[2]
        if not self.from_logits:
            first = K.clip(first, 1e-10, 1.0)
            second = K.clip(second, 1e-10, 1.0)
            first_, second_ = K.log(first), K.log(second)
        else:
            first_, second_ = first, second
        # embedded_features.shape = (M, T, 1)
        if self.use_intermediate_layer:
            features = K.dot(features, self.first_kernel)
            features = K.bias_add(features, self.first_bias, data_format="channels_last")
            features = self.intermediate_activation(features)
        embedded_features = K.dot(features, self.features_kernel)
        embedded_features = K.bias_add(
            embedded_features, self.features_bias, data_format="channels_last")
        if self.use_dimension_bias:
            tiling_shape = [1] * (K.ndim(first) - 1) + [K.shape(first)[-1]]
            embedded_features = K.tile(embedded_features, tiling_shape)
            embedded_features = K.bias_add(
                embedded_features, self.dimensions_bias, data_format="channels_last")
        sigma = K.sigmoid(embedded_features)

        result = weighted_sum(first_, second_, sigma,
                              self.first_threshold, self.second_threshold)
        probs = K.softmax(result)
        if self.return_logits:
            return [probs, result]
        return probs 
开发者ID:deepmipt,项目名称:DeepPavlov,代码行数:32,代码来源:cells.py

示例6: TemporalDropout

# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import tile [as 别名]
def TemporalDropout(inputs, dropout=0.0):
    """
    Drops with :dropout probability temporal steps of input 3D tensor
    """
    # TO DO: adapt for >3D tensors
    if dropout == 0.0:
        return inputs
    inputs_func = lambda x: K.ones_like(inputs[:, :, 0:1])
    inputs_mask = Lambda(inputs_func)(inputs)
    inputs_mask = Dropout(dropout)(inputs_mask)
    tiling_shape = [1, 1, K.shape(inputs)[2]] + [1] * (K.ndim(inputs) - 3)
    inputs_mask = Lambda(K.tile, arguments={"n": tiling_shape},
                         output_shape=inputs._keras_shape[1:])(inputs_mask)
    answer = Multiply()([inputs, inputs_mask])
    return answer 
开发者ID:deepmipt,项目名称:DeepPavlov,代码行数:17,代码来源:cells.py

示例7: yolo3_head

# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import tile [as 别名]
def yolo3_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3] # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
        [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
        [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))

    feats = K.reshape(
        feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    # Adjust preditions to each spatial grid point and anchor size.
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[..., ::-1], K.dtype(feats))
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[..., ::-1], K.dtype(feats))
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.sigmoid(feats[..., 5:])

    if calc_loss == True:
        return grid, feats, box_xy, box_wh
    return box_xy, box_wh, box_confidence, box_class_probs 
开发者ID:david8862,项目名称:keras-YOLOv3-model-set,代码行数:28,代码来源:postprocess.py

示例8: yolo2_head

# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import tile [as 别名]
def yolo2_head(feats, anchors, num_classes, input_shape, calc_loss=False):
    """Convert final layer features to bounding box parameters."""
    num_anchors = len(anchors)
    # Reshape to batch, height, width, num_anchors, box_params.
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])

    grid_shape = K.shape(feats)[1:3] # height, width
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
        [1, grid_shape[1], 1, 1])
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
        [grid_shape[0], 1, 1, 1])
    grid = K.concatenate([grid_x, grid_y])
    grid = K.cast(grid, K.dtype(feats))

    feats = K.reshape(
        feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])

    # Adjust preditions to each spatial grid point and anchor size.
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[..., ::-1], K.dtype(feats))
    #box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(grid_shape[..., ::-1], K.dtype(feats))
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[..., ::-1], K.dtype(feats))
    box_confidence = K.sigmoid(feats[..., 4:5])
    box_class_probs = K.softmax(feats[..., 5:])

    if calc_loss == True:
        return grid, feats, box_xy, box_wh
    return box_xy, box_wh, box_confidence, box_class_probs 
开发者ID:david8862,项目名称:keras-YOLOv3-model-set,代码行数:29,代码来源:postprocess.py


注:本文中的tensorflow.keras.backend.tile方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。