本文整理汇总了Python中tensorflow.keras.backend.sigmoid方法的典型用法代码示例。如果您正苦于以下问题:Python backend.sigmoid方法的具体用法?Python backend.sigmoid怎么用?Python backend.sigmoid使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.keras.backend
的用法示例。
在下文中一共展示了backend.sigmoid方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import sigmoid [as 别名]
def __init__(self,
ratio,
return_mask=False,
sigmoid_gating=False,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=None,
**kwargs):
super().__init__(**kwargs)
self.ratio = ratio
self.return_mask = return_mask
self.sigmoid_gating = sigmoid_gating
self.gating_op = K.sigmoid if self.sigmoid_gating else K.tanh
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
示例2: get_swish
# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import sigmoid [as 别名]
def get_swish(**kwargs):
def swish(x):
"""Swish activation function: x * sigmoid(x).
Reference: [Searching for Activation Functions](https://arxiv.org/abs/1710.05941)
"""
if backend.backend() == 'tensorflow':
try:
# The native TF implementation has a more
# memory-efficient gradient implementation
return backend.tf.nn.swish(x)
except AttributeError:
pass
return x * backend.sigmoid(x)
return swish
示例3: swish
# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import sigmoid [as 别名]
def swish(x):
"""Swish activation function.
# Arguments
x: Input tensor.
# Returns
The Swish activation: `x * sigmoid(x)`.
# References
[Searching for Activation Functions](https://arxiv.org/abs/1710.05941)
"""
if K.backend() == 'tensorflow':
try:
# The native TF implementation has a more
# memory-efficient gradient implementation
return K.tf.nn.swish(x)
except AttributeError:
pass
return x * K.sigmoid(x)
示例4: call
# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import sigmoid [as 别名]
def call(self, inputs, **kwargs):
assert isinstance(inputs, list) and len(inputs) == 3
first, second, features = inputs[0], inputs[1], inputs[2]
if not self.from_logits:
first = K.clip(first, 1e-10, 1.0)
second = K.clip(second, 1e-10, 1.0)
first_, second_ = K.log(first), K.log(second)
else:
first_, second_ = first, second
# embedded_features.shape = (M, T, 1)
if self.use_intermediate_layer:
features = K.dot(features, self.first_kernel)
features = K.bias_add(features, self.first_bias, data_format="channels_last")
features = self.intermediate_activation(features)
embedded_features = K.dot(features, self.features_kernel)
embedded_features = K.bias_add(
embedded_features, self.features_bias, data_format="channels_last")
if self.use_dimension_bias:
tiling_shape = [1] * (K.ndim(first) - 1) + [K.shape(first)[-1]]
embedded_features = K.tile(embedded_features, tiling_shape)
embedded_features = K.bias_add(
embedded_features, self.dimensions_bias, data_format="channels_last")
sigma = K.sigmoid(embedded_features)
result = weighted_sum(first_, second_, sigma,
self.first_threshold, self.second_threshold)
probs = K.softmax(result)
if self.return_logits:
return [probs, result]
return probs
示例5: _ctdet_decode
# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import sigmoid [as 别名]
def _ctdet_decode(hm, reg, wh, k=100, output_stride=4):
hm = K.sigmoid(hm)
hm = _nms(hm)
hm_shape = K.shape(hm)
reg_shape = K.shape(reg)
wh_shape = K.shape(wh)
batch, width, cat = hm_shape[0], hm_shape[2], hm_shape[3]
hm_flat = K.reshape(hm, (batch, -1))
reg_flat = K.reshape(reg, (reg_shape[0], -1, reg_shape[-1]))
wh_flat = K.reshape(wh, (wh_shape[0], -1, wh_shape[-1]))
def _process_sample(args):
_hm, _reg, _wh = args
_scores, _inds = tf.math.top_k(_hm, k=k, sorted=True)
_classes = K.cast(_inds % cat, 'float32')
_inds = K.cast(_inds / cat, 'int32')
_xs = K.cast(_inds % width, 'float32')
_ys = K.cast(K.cast(_inds / width, 'int32'), 'float32')
_wh = K.gather(_wh, _inds)
_reg = K.gather(_reg, _inds)
_xs = _xs + _reg[..., 0]
_ys = _ys + _reg[..., 1]
_x1 = _xs - _wh[..., 0] / 2
_y1 = _ys - _wh[..., 1] / 2
_x2 = _xs + _wh[..., 0] / 2
_y2 = _ys + _wh[..., 1] / 2
# rescale to image coordinates
_x1 = output_stride * _x1
_y1 = output_stride * _y1
_x2 = output_stride * _x2
_y2 = output_stride * _y2
_detection = K.stack([_x1, _y1, _x2, _y2, _scores, _classes], -1)
return _detection
detections = K.map_fn(_process_sample, [hm_flat, reg_flat, wh_flat], dtype=K.floatx())
return detections
示例6: yolo3_head
# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import sigmoid [as 别名]
def yolo3_head(feats, anchors, num_classes, input_shape, calc_loss=False):
"""Convert final layer features to bounding box parameters."""
num_anchors = len(anchors)
# Reshape to batch, height, width, num_anchors, box_params.
anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])
grid_shape = K.shape(feats)[1:3] # height, width
grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
[1, grid_shape[1], 1, 1])
grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
[grid_shape[0], 1, 1, 1])
grid = K.concatenate([grid_x, grid_y])
grid = K.cast(grid, K.dtype(feats))
feats = K.reshape(
feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])
# Adjust preditions to each spatial grid point and anchor size.
box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[..., ::-1], K.dtype(feats))
box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[..., ::-1], K.dtype(feats))
box_confidence = K.sigmoid(feats[..., 4:5])
box_class_probs = K.sigmoid(feats[..., 5:])
if calc_loss == True:
return grid, feats, box_xy, box_wh
return box_xy, box_wh, box_confidence, box_class_probs
示例7: yolo2_head
# 需要导入模块: from tensorflow.keras import backend [as 别名]
# 或者: from tensorflow.keras.backend import sigmoid [as 别名]
def yolo2_head(feats, anchors, num_classes, input_shape, calc_loss=False):
"""Convert final layer features to bounding box parameters."""
num_anchors = len(anchors)
# Reshape to batch, height, width, num_anchors, box_params.
anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])
grid_shape = K.shape(feats)[1:3] # height, width
grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
[1, grid_shape[1], 1, 1])
grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
[grid_shape[0], 1, 1, 1])
grid = K.concatenate([grid_x, grid_y])
grid = K.cast(grid, K.dtype(feats))
feats = K.reshape(
feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])
# Adjust preditions to each spatial grid point and anchor size.
box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[..., ::-1], K.dtype(feats))
#box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(grid_shape[..., ::-1], K.dtype(feats))
box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[..., ::-1], K.dtype(feats))
box_confidence = K.sigmoid(feats[..., 4:5])
box_class_probs = K.softmax(feats[..., 5:])
if calc_loss == True:
return grid, feats, box_xy, box_wh
return box_xy, box_wh, box_confidence, box_class_probs