本文整理汇总了Python中tensorflow.keras.activations.serialize方法的典型用法代码示例。如果您正苦于以下问题:Python activations.serialize方法的具体用法?Python activations.serialize怎么用?Python activations.serialize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.keras.activations
的用法示例。
在下文中一共展示了activations.serialize方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_config
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def get_config(self) -> dict:
config = {
'filters': self.filters,
'kernel_size': self.kernel_size,
'num_nodes': self.num_nodes,
'bond_dim': self.bond_dim,
'strides': self.strides,
'padding': self.padding,
'data_format': self.data_format,
'dilation_rate': self.dilation_rate,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
}
base_config = super(Conv2DMPO, self).get_config()
config.update(base_config)
return config
示例2: get_config
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def get_config(self):
config = {
"input_channels": self.input_channels,
"output_channels": self.output_channels,
"kernel_size": self.kernel_size,
"strides": self.strides,
"padding": self.padding,
"data_format": self.data_format,
"dilation_rate": self.dilation_rate,
"activation": activations.serialize(self.activation),
"groups": self.groups,
"use_bias": self.use_bias,
"kernel_initializer": initializers.serialize(self.kernel_initializer),
"bias_initializer": initializers.serialize(self.bias_initializer),
"kernel_regularizer": regularizers.serialize(self.kernel_regularizer),
"bias_regularizer": regularizers.serialize(self.bias_regularizer),
"activity_regularizer": regularizers.serialize(self.activity_regularizer),
"kernel_constraint": constraints.serialize(self.kernel_constraint),
"bias_constraint": constraints.serialize(self.bias_constraint)
}
base_config = super(GroupConv2D, self).get_config()
return {**base_config, **config}
示例3: serialize_kwarg
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def serialize_kwarg(key, attr):
if key.endswith('_initializer'):
return initializers.serialize(attr)
if key.endswith('_regularizer'):
return regularizers.serialize(attr)
if key.endswith('_constraint'):
return constraints.serialize(attr)
if key == 'activation':
return activations.serialize(attr)
if key == 'use_bias':
return attr
示例4: get_config
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def get_config(self):
config = {
'channels': self.channels,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint)
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
示例5: get_config
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def get_config(self):
config = {
'iterations': self.iterations,
'order': self.order,
'share_weights': self.share_weights,
'gcn_activation': activations.serialize(self.gcn_activation),
'dropout_rate': self.dropout_rate,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
示例6: get_config
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def get_config(self):
config = {
'alpha': self.alpha,
'propagations': self.propagations,
'mlp_hidden': self.mlp_hidden,
'mlp_activation': activations.serialize(self.mlp_activation),
'dropout_rate': self.dropout_rate,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
示例7: get_config
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def get_config(self):
config = {
"units": self.units,
"activation": activations.serialize(self.activation),
"use_bias": self.use_bias,
"kernel_quantizer":
constraints.serialize(self.kernel_quantizer_internal),
"bias_quantizer":
constraints.serialize(self.bias_quantizer_internal),
"kernel_initializer":
initializers.serialize(self.kernel_initializer),
"bias_initializer":
initializers.serialize(self.bias_initializer),
"kernel_regularizer":
regularizers.serialize(self.kernel_regularizer),
"bias_regularizer":
regularizers.serialize(self.bias_regularizer),
"activity_regularizer":
regularizers.serialize(self.activity_regularizer),
"kernel_constraint":
constraints.serialize(self.kernel_constraint),
"bias_constraint":
constraints.serialize(self.bias_constraint),
"kernel_range": self.kernel_range,
"bias_range": self.bias_range
}
base_config = super(QDense, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例8: get_config
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def get_config(self) -> dict:
"""Returns the config of the layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.
Returns:
Python dictionary containing the configuration of the layer.
"""
config = {}
# Include the Entangler-specific arguments
args = ['output_dim', 'num_legs', 'num_levels', 'use_bias']
for arg in args:
config[arg] = getattr(self, arg)
# Serialize the activation
config['activation'] = activations.serialize(getattr(self, 'activation'))
# Serialize the initializers
layer_initializers = ['kernel_initializer', 'bias_initializer']
for initializer_arg in layer_initializers:
config[initializer_arg] = initializers.serialize(
getattr(self, initializer_arg))
# Get base config
base_config = super(DenseEntangler, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例9: get_config
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def get_config(self) -> dict:
"""Returns the config of the layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.
Returns:
Python dictionary containing the configuration of the layer.
"""
config = {}
# Include the DenseDecomp-specific arguments
decomp_args = ['output_dim', 'decomp_size', 'use_bias']
for arg in decomp_args:
config[arg] = getattr(self, arg)
# Serialize the activation
config['activation'] = activations.serialize(getattr(self, 'activation'))
# Serialize the initializers
decomp_initializers = ['kernel_initializer', 'bias_initializer']
for initializer_arg in decomp_initializers:
config[initializer_arg] = initializers.serialize(
getattr(self, initializer_arg))
# Get base config
base_config = super(DenseDecomp, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例10: get_config
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def get_config(self) -> dict:
"""Returns the config of the layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.
Returns:
Python dictionary containing the configuration of the layer.
"""
config = {}
# Include the MPO-specific arguments
args = ['output_dim', 'num_nodes', 'bond_dim', 'use_bias']
for arg in args:
config[arg] = getattr(self, arg)
# Serialize the activation
config['activation'] = activations.serialize(getattr(self, 'activation'))
# Serialize the initializers
custom_initializers = ['kernel_initializer', 'bias_initializer']
for initializer_arg in custom_initializers:
config[initializer_arg] = initializers.serialize(
getattr(self, initializer_arg))
# Get base config
base_config = super(DenseMPO, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例11: get_config
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def get_config(self) -> dict:
"""Returns the config of the layer.
The same layer can be reinstantiated later
(without its trained weights) from this configuration.
Returns:
Python dictionary containing the configuration of the layer.
"""
config = {}
# Include the Condenser-specific arguments
args = ['exp_base', 'num_nodes', 'use_bias']
for arg in args:
config[arg] = getattr(self, arg)
# Serialize the activation
config['activation'] = activations.serialize(getattr(self, 'activation'))
# Serialize the initializers
initializers_list = ['kernel_initializer', 'bias_initializer']
for initializer_arg in initializers_list:
config[initializer_arg] = initializers.serialize(
getattr(self, initializer_arg))
# Get base config
base_config = super(DenseCondenser, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
示例12: get_config
# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import serialize [as 别名]
def get_config(self):
config = {"T": self.T,
"n_hidden": self.n_hidden,
"activation": activations.serialize(self.activation),
"activation_lstm": activations.serialize(
self.activation_lstm),
"recurrent_activation": activations.serialize(
self.recurrent_activation),
"kernel_initializer": initializers.serialize(
self.kernel_initializer),
"recurrent_initializer": initializers.serialize(
self.recurrent_initializer),
"bias_initializer": initializers.serialize(
self.bias_initializer),
"use_bias": self.use_bias,
"unit_forget_bias": self.unit_forget_bias,
"kernel_regularizer": regularizers.serialize(
self.kernel_regularizer),
"recurrent_regularizer": regularizers.serialize(
self.recurrent_regularizer),
"bias_regularizer": regularizers.serialize(
self.bias_regularizer),
"kernel_constraint": constraints.serialize(
self.kernel_constraint),
"recurrent_constraint": constraints.serialize(
self.recurrent_constraint),
"bias_constraint": constraints.serialize(self.bias_constraint)
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))