当前位置: 首页>>代码示例>>Python>>正文


Python activations.get方法代码示例

本文整理汇总了Python中tensorflow.keras.activations.get方法的典型用法代码示例。如果您正苦于以下问题:Python activations.get方法的具体用法?Python activations.get怎么用?Python activations.get使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras.activations的用法示例。


在下文中一共展示了activations.get方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def build(self, input_shape):
    self.W_list = []
    self.b_list = []
    init = initializers.get(self.init)
    prev_layer_size = self.n_embedding
    for i, layer_size in enumerate(self.layer_sizes):
      self.W_list.append(init([prev_layer_size, layer_size]))
      self.b_list.append(backend.zeros(shape=[
          layer_size,
      ]))
      prev_layer_size = layer_size
    self.W_list.append(init([prev_layer_size, self.n_outputs]))
    self.b_list.append(backend.zeros(shape=[
        self.n_outputs,
    ]))
    self.built = True 
开发者ID:deepchem,项目名称:deepchem,代码行数:18,代码来源:layers.py

示例2: __init__

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def __init__(self,
                 k,
                 channels=None,
                 return_mask=False,
                 activation=None,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.k = k
        self.channels = channels
        self.return_mask = return_mask
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:20,代码来源:diff_pool.py

示例3: convert_sequence_vocab

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def convert_sequence_vocab(self, sequence, sequence_lengths):
        PFAM_TO_UNIREP_ENCODED = {encoding: UNIREP_VOCAB.get(aa, 23) for aa, encoding in PFAM_VOCAB.items()}

        def to_uniprot_unirep(seq, seqlens):
            new_seq = np.zeros_like(seq)

            for pfam_encoding, unirep_encoding in PFAM_TO_UNIREP_ENCODED.items():
                new_seq[seq == pfam_encoding] = unirep_encoding

            # add start/stop
            new_seq = np.pad(new_seq, [[0, 0], [1, 1]], mode='constant')
            new_seq[:, 0] = UNIREP_VOCAB['<START>']
            new_seq[np.arange(new_seq.shape[0]), seqlens + 1] = UNIREP_VOCAB['<STOP>']

            return new_seq

        new_sequence = tf.py_func(to_uniprot_unirep, [sequence, sequence_lengths], sequence.dtype)
        new_sequence.set_shape([sequence.shape[0], sequence.shape[1] + 2])

        return new_sequence 
开发者ID:songlab-cal,项目名称:tape-neurips2019,代码行数:22,代码来源:UniRepModel.py

示例4: __init__

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def __init__(self,
               output_dim: int,
               decomp_size: int,
               use_bias: Optional[bool] = True,
               activation: Optional[Text] = None,
               kernel_initializer: Optional[Text] = 'glorot_uniform',
               bias_initializer: Optional[Text] = 'zeros',
               **kwargs) -> None:

    # Allow specification of input_dim instead of input_shape,
    # for compatability with Keras layers that support this
    if 'input_shape' not in kwargs and 'input_dim' in kwargs:
      kwargs['input_shape'] = (kwargs.pop('input_dim'),)

    super(DenseDecomp, self).__init__(**kwargs)

    self.output_dim = output_dim
    self.decomp_size = decomp_size

    self.use_bias = use_bias
    self.activation = activations.get(activation)
    self.kernel_initializer = initializers.get(kernel_initializer)
    self.bias_initializer = initializers.get(bias_initializer) 
开发者ID:google,项目名称:TensorNetwork,代码行数:25,代码来源:dense.py

示例5: __init__

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def __init__(self,
               exp_base: int,
               num_nodes: int,
               use_bias: Optional[bool] = True,
               activation: Optional[Text] = None,
               kernel_initializer: Optional[Text] = 'glorot_uniform',
               bias_initializer: Optional[Text] = 'zeros',
               **kwargs) -> None:

    if 'input_shape' not in kwargs and 'input_dim' in kwargs:
      kwargs['input_shape'] = (kwargs.pop('input_dim'),)

    super(DenseCondenser, self).__init__(**kwargs)

    self.exp_base = exp_base
    self.num_nodes = num_nodes
    self.nodes = []
    self.use_bias = use_bias
    self.activation = activations.get(activation)
    self.kernel_initializer = initializers.get(kernel_initializer)
    self.bias_initializer = initializers.get(bias_initializer) 
开发者ID:google,项目名称:TensorNetwork,代码行数:23,代码来源:condenser.py

示例6: get

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def get(identifier: OptStrOrCallable = None) -> Callable[..., Any]:
    """
    Get activations by identifier

    Args:
        identifier (str or callable): the identifier of activations

    Returns:
        callable activation

    """
    try:
        return keras_get(identifier)
    except ValueError:
        if isinstance(identifier, str):
            return deserialize(identifier, custom_objects=globals())
        else:
            raise ValueError('Could not interpret:',  identifier) 
开发者ID:materialsvirtuallab,项目名称:megnet,代码行数:20,代码来源:activations.py

示例7: __init__

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def __init__(self,
               output_dim,
               input_dim,
               init_fn='glorot_uniform',
               inner_init_fn='orthogonal',
               activation_fn='tanh',
               inner_activation_fn='hard_sigmoid',
               **kwargs):
    """
    Parameters
    ----------
    output_dim: int
      Dimensionality of output vectors.
    input_dim: int
      Dimensionality of input vectors.
    init_fn: str
      TensorFlow nitialization to use for W.
    inner_init_fn: str
      TensorFlow initialization to use for U.
    activation_fn: str
      TensorFlow activation to use for output.
    inner_activation_fn: str
      TensorFlow activation to use for inner steps.
    """

    super(LSTMStep, self).__init__(**kwargs)
    self.init = init_fn
    self.inner_init = inner_init_fn
    self.output_dim = output_dim
    # No other forget biases supported right now.
    self.activation = activation_fn
    self.inner_activation = inner_activation_fn
    self.activation_fn = activations.get(activation_fn)
    self.inner_activation_fn = activations.get(inner_activation_fn)
    self.input_dim = input_dim 
开发者ID:deepchem,项目名称:deepchem,代码行数:37,代码来源:layers.py

示例8: deserialize_kwarg

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def deserialize_kwarg(key, attr):
    if key.endswith('_initializer'):
        return initializers.get(attr)
    if key.endswith('_regularizer'):
        return regularizers.get(attr)
    if key.endswith('_constraint'):
        return constraints.get(attr)
    if key == 'activation':
        return activations.get(attr) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:11,代码来源:keras.py

示例9: __init__

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def __init__(self,
                 trainable_kernel=False,
                 activation=None,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.trainable_kernel = trainable_kernel
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:16,代码来源:base.py

示例10: __init__

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def __init__(self,
                 k,
                 mlp_hidden=None,
                 mlp_activation='relu',
                 return_mask=False,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):

        super().__init__(**kwargs)
        self.k = k
        self.mlp_hidden = mlp_hidden if mlp_hidden else []
        self.mlp_activation = mlp_activation
        self.return_mask = return_mask
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:30,代码来源:mincut_pool.py

示例11: __init__

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def __init__(self,
                 channels,
                 mlp_hidden=None,
                 mlp_activation='relu',
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super().__init__(aggregate='sum',
                         activation=activation,
                         use_bias=use_bias,
                         kernel_initializer=kernel_initializer,
                         bias_initializer=bias_initializer,
                         kernel_regularizer=kernel_regularizer,
                         bias_regularizer=bias_regularizer,
                         activity_regularizer=activity_regularizer,
                         kernel_constraint=kernel_constraint,
                         bias_constraint=bias_constraint,
                         **kwargs)
        self.channels = self.output_dim = channels
        self.mlp_hidden = mlp_hidden if mlp_hidden else []
        self.mlp_activation = activations.get(mlp_activation) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:30,代码来源:edge_conv.py

示例12: __init__

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def __init__(self,
                 channels,
                 order=1,
                 iterations=1,
                 share_weights=False,
                 gcn_activation='relu',
                 dropout_rate=0.0,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super().__init__(channels,
                         activation=activation,
                         use_bias=use_bias,
                         kernel_initializer=kernel_initializer,
                         bias_initializer=bias_initializer,
                         kernel_regularizer=kernel_regularizer,
                         bias_regularizer=bias_regularizer,
                         activity_regularizer=activity_regularizer,
                         kernel_constraint=kernel_constraint,
                         bias_constraint=bias_constraint,
                         **kwargs)
        self.iterations = iterations
        self.order = order
        self.share_weights = share_weights
        self.gcn_activation = activations.get(gcn_activation)
        self.dropout_rate = dropout_rate 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:35,代码来源:arma_conv.py

示例13: __init__

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def __init__(self,
                 channels,
                 alpha=0.2,
                 propagations=1,
                 mlp_hidden=None,
                 mlp_activation='relu',
                 dropout_rate=0.0,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super().__init__(channels,
                         activation=activation,
                         use_bias=use_bias,
                         kernel_initializer=kernel_initializer,
                         bias_initializer=bias_initializer,
                         kernel_regularizer=kernel_regularizer,
                         bias_regularizer=bias_regularizer,
                         activity_regularizer=activity_regularizer,
                         kernel_constraint=kernel_constraint,
                         bias_constraint=bias_constraint,
                         **kwargs)
        self.mlp_hidden = mlp_hidden if mlp_hidden else []
        self.alpha = alpha
        self.propagations = propagations
        self.mlp_activation = activations.get(mlp_activation)
        self.dropout_rate = dropout_rate 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:35,代码来源:appnp.py

示例14: __init__

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def __init__(self,
                 channels,
                 epsilon=None,
                 mlp_hidden=None,
                 mlp_activation='relu',
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super().__init__(aggregate='sum',
                         activation=activation,
                         use_bias=use_bias,
                         kernel_initializer=kernel_initializer,
                         bias_initializer=bias_initializer,
                         kernel_regularizer=kernel_regularizer,
                         bias_regularizer=bias_regularizer,
                         activity_regularizer=activity_regularizer,
                         kernel_constraint=kernel_constraint,
                         bias_constraint=bias_constraint,
                         **kwargs)
        self.channels = self.output_dim = channels
        self.epsilon = epsilon
        self.mlp_hidden = mlp_hidden if mlp_hidden else []
        self.mlp_activation = activations.get(mlp_activation) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:32,代码来源:gin_conv.py

示例15: __init__

# 需要导入模块: from tensorflow.keras import activations [as 别名]
# 或者: from tensorflow.keras.activations import get [as 别名]
def __init__(self,
               output_dim: int,
               num_legs: int,
               num_levels: int,
               use_bias: Optional[bool] = True,
               activation: Optional[Text] = None,
               kernel_initializer: Optional[Text] = 'glorot_uniform',
               bias_initializer: Optional[Text] = 'zeros',
               **kwargs) -> None:

    if 'input_shape' not in kwargs and 'input_dim' in kwargs:
      kwargs['input_shape'] = (kwargs.pop('input_dim'),)

    assert (
        num_legs >=
        2), f'Need at least 2 legs to create Entangler but got {num_legs} legs'
    assert (
        num_levels >= 1
    ), f'Need at least 1 level to create Entangler but got {num_levels} levels'

    super(DenseEntangler, self).__init__(**kwargs)

    self.output_dim = output_dim
    self.num_legs = num_legs
    self.num_levels = num_levels
    self.nodes = []
    self.use_bias = use_bias
    self.activation = activations.get(activation)
    self.kernel_initializer = initializers.get(kernel_initializer)
    self.bias_initializer = initializers.get(bias_initializer) 
开发者ID:google,项目名称:TensorNetwork,代码行数:32,代码来源:entangler.py


注:本文中的tensorflow.keras.activations.get方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。