当前位置: 首页>>代码示例>>Python>>正文


Python keras.Sequential方法代码示例

本文整理汇总了Python中tensorflow.keras.Sequential方法的典型用法代码示例。如果您正苦于以下问题:Python keras.Sequential方法的具体用法?Python keras.Sequential怎么用?Python keras.Sequential使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras的用法示例。


在下文中一共展示了keras.Sequential方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def __init__(self, out_features,**kwargs):
        super(_DenseLayer, self).__init__(**kwargs)
        k_reg = None if w_decay is None else l2(w_decay)
        self.layers = []
        self.layers.append(tf.keras.Sequential(
            [
                layers.ReLU(),
                layers.Conv2D(
                    filters=out_features, kernel_size=(3,3), strides=(1,1), padding='same',
                    use_bias=True, kernel_initializer=weight_init,
                kernel_regularizer=k_reg),
                layers.BatchNormalization(),
                layers.ReLU(),
                layers.Conv2D(
                    filters=out_features, kernel_size=(3,3), strides=(1,1), padding='same',
                    use_bias=True, kernel_initializer=weight_init,
                    kernel_regularizer=k_reg),
                layers.BatchNormalization(),
            ])) # first relu can be not needed 
开发者ID:xavysp,项目名称:DexiNed,代码行数:21,代码来源:model.py

示例2: __call__

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def __call__(self, model):
        """
        :param model: Keras model to be accelerated
        :type model: Union[keras.Model, keras.Sequential]
        :return: Accelerated Keras model
        :rtype: Union[keras.Model, keras.Sequential]
        """
        if isinstance(model, tfk.Model) or isinstance(model, tfk.Sequential):
            self.model = model
        else:
            raise TypeError(f'FastMCInference expects tensorflow.keras Model, you gave {type(model)}')
        new_input = tfk.layers.Input(shape=(self.model.input_shape[1:]), name='input')
        mc_model = tfk.models.Model(inputs=self.model.inputs, outputs=self.model.outputs)

        mc = FastMCInferenceMeanVar()(tfk.layers.TimeDistributed(mc_model)(FastMCRepeat(self.n)(new_input)))
        new_mc_model = tfk.models.Model(inputs=new_input, outputs=mc)

        return new_mc_model 
开发者ID:henrysky,项目名称:astroNN,代码行数:20,代码来源:layers.py

示例3: build

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def build(self, input_shape):
        assert isinstance(input_shape, list)
        layer_kwargs = dict(
            kernel_initializer=self.kernel_initializer,
            bias_initializer=self.bias_initializer,
            kernel_regularizer=self.kernel_regularizer,
            bias_regularizer=self.bias_regularizer,
            kernel_constraint=self.kernel_constraint,
            bias_constraint=self.bias_constraint
        )
        mlp_layers = []
        for i, channels in enumerate(self.mlp_hidden):
            mlp_layers.append(
                Dense(channels, self.mlp_activation, **layer_kwargs)
            )
        mlp_layers.append(
            Dense(self.k, 'softmax', **layer_kwargs)
        )
        self.mlp = Sequential(mlp_layers)

        super().build(input_shape) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:23,代码来源:mincut_pool.py

示例4: build_nn_model

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def build_nn_model(input_shape, nn_define, loss, optimizer, metrics,
                   is_supported_layer=has_builder,
                   default_layer=None) -> KerasNNModel:
    model = Sequential()
    is_first_layer = True
    for layer_config in nn_define:
        layer = layer_config.get("layer", default_layer)
        if layer and is_supported_layer(layer):
            del layer_config["layer"]
            if is_first_layer:
                layer_config["input_shape"] = input_shape
                is_first_layer = False
            builder = get_builder(layer)
            model.add(builder(**layer_config))

        else:
            raise ValueError(f"dnn not support layer {layer}")

    return from_keras_sequential_model(model=model,
                                       loss=loss,
                                       optimizer=optimizer,
                                       metrics=metrics) 
开发者ID:FederatedAI,项目名称:FATE,代码行数:24,代码来源:nn.py

示例5: build_model

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def build_model(input_shape):
    """Build a logistic regression model with tf.keras."""
    model = keras.Sequential(
        [
            layers.Dense(
                1, use_bias=False, activation="sigmoid", input_shape=[input_shape]
            ),
        ]
    )

    model.compile(
        loss="binary_crossentropy",
        optimizer=tf.train.AdamOptimizer(),
        metrics=["accuracy"],
    )

    return model 
开发者ID:tf-encrypted,项目名称:tf-encrypted,代码行数:19,代码来源:main.py

示例6: _build_model

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def _build_model(self, num_classes, image_size):
        units = self._knobs['hidden_layer_units']
        layers = self._knobs['hidden_layer_count']
        lr = self._knobs['learning_rate']
         
        model = keras.Sequential()
        model.add(keras.layers.Flatten(input_shape=(image_size, image_size, 3)))
        model.add(keras.layers.BatchNormalization())

        for _ in range(layers):
            model.add(keras.layers.Dense(units, activation=tf.nn.relu))

        model.add(keras.layers.Dense(
            num_classes, 
            activation=tf.nn.softmax
        ))
        
        model.compile(
            optimizer=keras.optimizers.Adam(lr=lr),
            loss='sparse_categorical_crossentropy',
            metrics=['accuracy']
        )
        return model 
开发者ID:nginyc,项目名称:rafiki,代码行数:25,代码来源:TfFeedForward.py

示例7: ConvLayer

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def ConvLayer(conv_function=Conv2D,
              filters=[32, 64, 64],
              kernels=[[8, 8], [4, 4], [3, 3]],
              strides=[[4, 4], [2, 2], [1, 1]],
              padding='valid',
              activation='relu'):
    '''
    Params:
        conv_function: the convolution function
        filters: list of flitter of all hidden conv layers
        kernels: list of kernel of all hidden conv layers
        strides: list of stride of all hidden conv layers
        padding: padding mode
        activation: activation function
    Return:
        A sequential of multi-convolution layers, with Flatten.
    '''
    layers = Sequential([conv_function(filters=f, kernel_size=k, strides=s, padding=padding, activation=activation) for f, k, s in zip(filters, kernels, strides)])
    layers.add(Flatten())
    return layers 
开发者ID:StepNeverStop,项目名称:RLs,代码行数:22,代码来源:layers.py

示例8: create_keras_model

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def create_keras_model(input_dim, learning_rate, window_size):
    """Creates Keras model for regression.

    Args:
      input_dim: How many features the input has
      learning_rate: Learning rate for training

    Returns:
      The compiled Keras model (still needs to be trained)
    """

    model = keras.Sequential([
        layers.LSTM(4, dropout = 0.2, input_shape = (input_dim, window_size)),
        layers.Dense(1)
    ])

    model.compile(loss='mean_squared_error', optimizer=tf.train.AdamOptimizer(
        learning_rate=learning_rate))  

    return model 
开发者ID:kubeflow,项目名称:pipelines,代码行数:22,代码来源:model.py

示例9: __init__

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def __init__(self, num_layers=12, filters=24, num_classes=10, dropout_rate=0.0):
        super().__init__()
        self.num_layers = num_layers

        self.stem = Sequential([
            Conv2D(filters, kernel_size=3, padding='same', use_bias=False),
            BatchNormalization()
        ])

        labels = ['layer_{}'.format(i) for i in range(num_layers)]
        self.enas_layers = []
        for i in range(num_layers):
            layer = ENASLayer(labels[i], labels[:i], filters)
            self.enas_layers.append(layer)

        pool_num = 2
        self.pool_distance = num_layers // (pool_num + 1)
        self.pool_layers = [FactorizedReduce(filters) for _ in range(pool_num)]

        self.gap = GlobalAveragePooling2D()
        self.dropout = Dropout(dropout_rate)
        self.dense = Dense(num_classes) 
开发者ID:microsoft,项目名称:nni,代码行数:24,代码来源:macro.py

示例10: create_keras_model

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def create_keras_model():
    from tensorflow import keras
    from tensorflow.keras import layers
    model = keras.Sequential()
    # Adds a densely-connected layer with 64 units to the model:
    model.add(layers.Dense(64, activation="relu", input_shape=(32, )))
    # Add another:
    model.add(layers.Dense(64, activation="relu"))
    # Add a softmax layer with 10 output units:
    model.add(layers.Dense(10, activation="softmax"))

    model.compile(
        optimizer=keras.optimizers.RMSprop(0.01),
        loss=keras.losses.categorical_crossentropy,
        metrics=[keras.metrics.categorical_accuracy])
    return model
# __tf_model_end__
# yapf: enable

# yapf: disable
# __ray_start__ 
开发者ID:ray-project,项目名称:ray,代码行数:23,代码来源:tf_example.py

示例11: test_load_persist

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def test_load_persist(self):
        # define the model.
        model = Sequential()
        model.add(Dense(16, input_shape=(10,)))
        model.add(Dropout(0.5))
        model.add(Dense(10, activation='softmax'))
        model.compile(optimizer='adam', loss='categorical_crossentropy')

        # fetch activations.
        x = np.ones((2, 10))
        activations = get_activations(model, x)

        # persist the activations to the disk.
        output = 'activations.json'
        persist_to_json_file(activations, output)

        # read them from the disk.
        activations2 = load_activations_from_json_file(output)

        for a1, a2 in zip(list(activations.values()), list(activations2.values())):
            np.testing.assert_almost_equal(a1, a2) 
开发者ID:philipperemy,项目名称:keract,代码行数:23,代码来源:persist_load_test.py

示例12: eval_batch

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def eval_batch(o, ims, allow_input_layer = False):
  layer_functions, has_input_layer = (
    get_layer_functions (o) if isinstance (o, (keras.Sequential, keras.Model))
    # TODO: Check it's sequential? --------------------------------------^
    else o)
  having_input_layer = allow_input_layer and has_input_layer
  activations = []
  for l, func in enumerate(layer_functions):
    if not having_input_layer:
      if l==0:
        activations.append(func([ims])[0])
      else:
        activations.append(func([activations[l-1]])[0])
    else:
      if l==0:
        activations.append([]) #activations.append(func([ims])[0])
      elif l==1:
        activations.append(func([ims])[0])
      else:
        activations.append(func([activations[l-1]])[0])
  return activations 
开发者ID:TrustAI,项目名称:DeepConcolic,代码行数:23,代码来源:utils.py

示例13: build_model

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def build_model(hp):
    model = keras.Sequential()
    model.add(layers.Flatten(input_shape=(28, 28)))
    min_layers = 2
    max_layers = 5
    for i in range(hp.Int('num_layers', min_layers, max_layers)):
        model.add(layers.Dense(units=hp.Int('units_' + str(i),
                                            32,
                                            256,
                                            32,
                                            parent_name='num_layers',
                                            parent_values=list(range(i + 1, max_layers + 1))),
                               activation='relu'))
    model.add(layers.Dense(10, activation='softmax'))
    model.compile(
        optimizer=keras.optimizers.Adam(1e-4),
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy'])
    return model 
开发者ID:keras-team,项目名称:keras-tuner,代码行数:21,代码来源:helloworld.py

示例14: test_checkpoint_removal

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def test_checkpoint_removal(tmp_dir):
    def build_model(hp):
        model = keras.Sequential([
            keras.layers.Dense(hp.Int('size', 5, 10)),
            keras.layers.Dense(1)])
        model.compile('sgd', 'mse', metrics=['accuracy'])
        return model

    tuner = kerastuner.Tuner(
        oracle=kerastuner.tuners.randomsearch.RandomSearchOracle(
            objective='val_accuracy',
            max_trials=1,
            seed=1337),
        hypermodel=build_model,
        directory=tmp_dir,
    )
    x, y = np.ones((1, 5)), np.ones((1, 1))
    tuner.search(x,
                 y,
                 validation_data=(x, y),
                 epochs=21)
    trial = list(tuner.oracle.trials.values())[0]
    trial_id = trial.trial_id
    assert tf.io.gfile.exists(tuner._get_checkpoint_fname(trial_id, 20))
    assert not tf.io.gfile.exists(tuner._get_checkpoint_fname(trial_id, 10)) 
开发者ID:keras-team,项目名称:keras-tuner,代码行数:27,代码来源:tuner_correctness_test.py

示例15: __init__

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Sequential [as 别名]
def __init__(self, filters):
        super(Attention_block, self).__init__()

        self.W_g = Sequential([
            Conv2D(filters, kernel_size=1, strides=1, padding='same'),
            BatchNormalization()
        ])

        self.W_x = Sequential([
            Conv2D(filters, kernel_size=1, strides=1, padding='same'),
            BatchNormalization()
        ])

        self.psi = Sequential([
            Conv2D(filters, kernel_size=1, strides=1, padding='same'),
            BatchNormalization(),
            Activation('sigmoid')
        ])

        self.relu = Activation('relu') 
开发者ID:1044197988,项目名称:TF.Keras-Commonly-used-models,代码行数:22,代码来源:Unet_family.py


注:本文中的tensorflow.keras.Sequential方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。