当前位置: 首页>>代码示例>>Python>>正文


Python keras.Input方法代码示例

本文整理汇总了Python中tensorflow.keras.Input方法的典型用法代码示例。如果您正苦于以下问题:Python keras.Input方法的具体用法?Python keras.Input怎么用?Python keras.Input使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.keras的用法示例。


在下文中一共展示了keras.Input方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _test_single_mode

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def _test_single_mode(layer, **kwargs):
    sparse = kwargs.pop('sparse', False)
    A_in = Input(shape=(None,), sparse=sparse)
    X_in = Input(shape=(F,))
    inputs = [X_in, A_in]
    if sparse:
        input_data = [X, sp_matrix_to_sp_tensor(A)]
    else:
        input_data = [X, A]

    if kwargs.pop('edges', None):
        E_in = Input(shape=(S, ))
        inputs.append(E_in)
        input_data.append(E_single)

    layer_instance = layer(**kwargs)
    output = layer_instance(inputs)
    model = Model(inputs, output)

    output = model(input_data)

    assert output.shape == (N, kwargs['channels']) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:24,代码来源:test_convolutional.py

示例2: _test_batch_mode

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def _test_batch_mode(layer, **kwargs):
    A_batch = np.stack([A] * batch_size)
    X_batch = np.stack([X] * batch_size)

    A_in = Input(shape=(N, N))
    X_in = Input(shape=(N, F))
    inputs = [X_in, A_in]
    input_data = [X_batch, A_batch]

    if kwargs.pop('edges', None):
        E_batch = np.stack([E] * batch_size)
        E_in = Input(shape=(N, N, S))
        inputs.append(E_in)
        input_data.append(E_batch)

    layer_instance = layer(**kwargs)
    output = layer_instance(inputs)
    model = Model(inputs, output)

    output = model(input_data)

    assert output.shape == (batch_size, N, kwargs['channels']) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:24,代码来源:test_convolutional.py

示例3: ConvDiscriminator

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def ConvDiscriminator(input_shape=(64, 64, 3),
                      dim=64,
                      n_downsamplings=4,
                      norm='batch_norm',
                      name='ConvDiscriminator'):
    Norm = _get_norm_layer(norm)

    # 0
    h = inputs = keras.Input(shape=input_shape)

    # 1: downsamplings, ... -> 16x16 -> 8x8 -> 4x4
    h = keras.layers.Conv2D(dim, 4, strides=2, padding='same')(h)
    h = tf.nn.leaky_relu(h, alpha=0.2)  # or keras.layers.LeakyReLU(alpha=0.2)(h)

    for i in range(n_downsamplings - 1):
        d = min(dim * 2 ** (i + 1), dim * 8)
        h = keras.layers.Conv2D(d, 4, strides=2, padding='same', use_bias=False)(h)
        h = Norm()(h)
        h = tf.nn.leaky_relu(h, alpha=0.2)  # or h = keras.layers.LeakyReLU(alpha=0.2)(h)

    # 2: logit
    h = keras.layers.Conv2D(1, 4, strides=1, padding='valid')(h)

    return keras.Model(inputs=inputs, outputs=h, name=name) 
开发者ID:LynnHo,项目名称:DCGAN-LSGAN-WGAN-GP-DRAGAN-Tensorflow-2,代码行数:26,代码来源:module.py

示例4: _test_mixed_mode

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def _test_mixed_mode(layer, **kwargs):
    sparse = kwargs.pop('sparse', False)
    X_batch = np.stack([X] * batch_size)
    A_in = Input(shape=(N,), sparse=sparse)
    X_in = Input(shape=(N, F))
    inputs = [X_in, A_in]
    if sparse:
        input_data = [X_batch, sp_matrix_to_sp_tensor(A)]
    else:
        input_data = [X_batch, A]

    layer_instance = layer(**kwargs)
    output = layer_instance(inputs)
    model = Model(inputs, output)

    output = model(input_data)

    assert output.shape == (batch_size, N, kwargs['channels']) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:20,代码来源:test_convolutional.py

示例5: test_shape_1

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def test_shape_1(self):
        # model definition
        i1 = Input(shape=(10,), name='i1')
        i2 = Input(shape=(10,), name='i2')

        a = Dense(1, name='fc1')(i1)
        b = Dense(1, name='fc2')(i2)

        c = concatenate([a, b], name='concat')
        d = Dense(1, name='out')(c)
        model = Model(inputs=[i1, i2], outputs=[d])

        # inputs to the model
        x = [np.random.uniform(size=(32, 10)),
             np.random.uniform(size=(32, 10))]

        # call to fetch the activations of the model.
        activations = get_activations(model, x, auto_compile=True)

        # OrderedDict so its ok to .values()
        self.assertListEqual([a.shape for a in activations.values()],
                             [(32, 10), (32, 10), (32, 1), (32, 1), (32, 2), (32, 1)]) 
开发者ID:philipperemy,项目名称:keract,代码行数:24,代码来源:get_activations_test.py

示例6: test_inputs_order

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def test_inputs_order(self):
        i10 = Input(shape=(10,), name='i1')
        i40 = Input(shape=(40,), name='i4')
        i30 = Input(shape=(30,), name='i3')
        i20 = Input(shape=(20,), name='i2')

        a = Dense(1, name='fc1')(concatenate([i10, i40, i30, i20], name='concat'))
        model = Model(inputs=[i40, i30, i20, i10], outputs=[a])
        x = [
            np.random.uniform(size=(1, 40)),
            np.random.uniform(size=(1, 30)),
            np.random.uniform(size=(1, 20)),
            np.random.uniform(size=(1, 10))
        ]

        acts = get_activations(model, x)
        self.assertListEqual(list(acts['i1'].shape), [1, 10])
        self.assertListEqual(list(acts['i2'].shape), [1, 20])
        self.assertListEqual(list(acts['i3'].shape), [1, 30])
        self.assertListEqual(list(acts['i4'].shape), [1, 40]) 
开发者ID:philipperemy,项目名称:keract,代码行数:22,代码来源:get_activations_test.py

示例7: build_model

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def build_model(hp):
    inputs = keras.Input(shape=(28, 28))
    x = keras.layers.Reshape((28 * 28,))(inputs)
    for i in range(hp.Int('num_layers', 1, 4)):
        x = keras.layers.Dense(
            units=hp.Int('units_' + str(i), 128, 512, 32, default=256),
            activation='relu')(x)
    x = keras.layers.Dropout(hp.Float('dp', 0., 0.6, 0.1, default=0.5))(x)
    outputs = keras.layers.Dense(10, activation='softmax')(x)
    model = keras.Model(inputs, outputs)
    model.compile(
        optimizer=keras.optimizers.Adam(
            hp.Choice('learning_rate', [1e-2, 2e-3, 5e-4])),
        loss='sparse_categorical_crossentropy',
        metrics=['accuracy'])
    return model 
开发者ID:keras-team,项目名称:keras-tuner,代码行数:18,代码来源:end_to_end_test.py

示例8: build_discriminator

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def build_discriminator(self):
        """Builds a discriminator network based on the SRGAN design."""

        def d_block(layer_input, filters, strides=1, bn=True):
            """Discriminator layer block.
            Args:
                layer_input: Input feature map for the convolutional block.
                filters: Number of filters in the convolution.
                strides: The stride of the convolution.
                bn: Whether to use batch norm or not.
            """
            d = keras.layers.Conv2D(filters, kernel_size=3, strides=strides, padding='same')(layer_input)
            if bn:
                d = keras.layers.BatchNormalization(momentum=0.8)(d)
            d = keras.layers.LeakyReLU(alpha=0.2)(d)
                
            return d

        # Input img
        d0 = keras.layers.Input(shape=self.hr_shape)

        d1 = d_block(d0, self.df, bn=False)
        d2 = d_block(d1, self.df, strides=2)
        d3 = d_block(d2, self.df)
        d4 = d_block(d3, self.df, strides=2)
        d5 = d_block(d4, self.df * 2)
        d6 = d_block(d5, self.df * 2, strides=2)
        d7 = d_block(d6, self.df * 2)
        d8 = d_block(d7, self.df * 2, strides=2)

        validity = keras.layers.Conv2D(1, kernel_size=1, strides=1, activation='sigmoid', padding='same')(d8)

        return keras.models.Model(d0, validity) 
开发者ID:HasnainRaz,项目名称:Fast-SRGAN,代码行数:35,代码来源:model.py

示例9: main

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def main():
    args = parser.parse_args()

    # Get all image paths
    image_paths = [os.path.join(args.image_dir, x) for x in os.listdir(args.image_dir)]

    # Change model input shape to accept all size inputs
    model = keras.models.load_model('models/generator.h5')
    inputs = keras.Input((None, None, 3))
    output = model(inputs)
    model = keras.models.Model(inputs, output)

    # Loop over all images
    for image_path in image_paths:
        
        # Read image
        low_res = cv2.imread(image_path, 1)

        # Convert to RGB (opencv uses BGR as default)
        low_res = cv2.cvtColor(low_res, cv2.COLOR_BGR2RGB)

        # Rescale to 0-1.
        low_res = low_res / 255.0

        # Get super resolution image
        sr = model.predict(np.expand_dims(low_res, axis=0))[0]

        # Rescale values in range 0-255
        sr = ((sr + 1) / 2.) * 255

        # Convert back to BGR for opencv
        sr = cv2.cvtColor(sr, cv2.COLOR_RGB2BGR)

        # Save the results:
        cv2.imwrite(os.path.join(args.output_dir, os.path.basename(image_path)), sr) 
开发者ID:HasnainRaz,项目名称:Fast-SRGAN,代码行数:37,代码来源:infer.py

示例10: _test_single_mode

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def _test_single_mode(layer, **kwargs):
    X = np.random.normal(size=(N, F))
    if 'target_shape' in kwargs:
        target_output_shape = kwargs.pop('target_shape')
    else:
        target_output_shape = (1, kwargs.get('channels', F))

    X_in = Input(shape=(F,))
    layer_instance = layer(**kwargs)
    output = layer_instance(X_in)
    model = Model(X_in, output)
    output = model(X)
    assert output.shape == target_output_shape
    assert output.shape == layer_instance.compute_output_shape(X.shape)
    _check_output_and_model_output_shapes(output.shape, model.output_shape) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:17,代码来源:test_global_pooling.py

示例11: _test_batch_mode

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def _test_batch_mode(layer, **kwargs):
    X = np.random.normal(size=(batch_size, N, F))
    if 'target_shape' in kwargs:
        target_output_shape = kwargs.pop('target_shape')
    else:
        target_output_shape = (batch_size, kwargs.get('channels', F))

    X_in = Input(shape=(N, F))
    layer_instance = layer(**kwargs)
    output = layer_instance(X_in)
    model = Model(X_in, output)
    output = model(X)
    assert output.shape == target_output_shape
    assert output.shape == layer_instance.compute_output_shape(X.shape)
    _check_output_and_model_output_shapes(output.shape, model.output_shape) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:17,代码来源:test_global_pooling.py

示例12: _test_single_mode

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def _test_single_mode(layer, **kwargs):
    A = np.ones((N, N))
    X = np.random.normal(size=(N, F))
    sparse = kwargs.pop('sparse', None) is not None

    A_in = Input(shape=(None,), sparse=sparse)
    X_in = Input(shape=(F,))

    layer_instance = layer(**kwargs)
    output = layer_instance([X_in, A_in])
    model = Model([X_in, A_in], output)
    output = model([X, A])
    X_pool, A_pool, mask = output

    if 'ratio' in kwargs.keys():
        N_exp = kwargs['ratio'] * N
    elif 'k' in kwargs.keys():
        N_exp = kwargs['k']
    else:
        raise ValueError('Need k or ratio.')
    N_pool_expected = int(np.ceil(N_exp))
    N_pool_true = A_pool.shape[-1]

    _check_number_of_nodes(N_pool_expected, N_pool_true)

    assert X_pool.shape == (N_pool_expected, F)
    assert A_pool.shape == (N_pool_expected, N_pool_expected)

    output_shape = [o.shape for o in output]
    _check_output_and_model_output_shapes(output_shape, model.output_shape) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:32,代码来源:test_pooling.py

示例13: _test_batch_mode

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def _test_batch_mode(layer, **kwargs):
    A = np.ones((batch_size, N, N))
    X = np.random.normal(size=(batch_size, N, F))

    A_in = Input(shape=(N, N))
    X_in = Input(shape=(N, F))

    layer_instance = layer(**kwargs)
    output = layer_instance([X_in, A_in])
    model = Model([X_in, A_in], output)
    output = model([X, A])
    X_pool, A_pool, mask = output

    if 'ratio' in kwargs.keys():
        N_exp = kwargs['ratio'] * N
    elif 'k' in kwargs.keys():
        N_exp = kwargs['k']
    else:
        raise ValueError('Need k or ratio.')
    N_pool_expected = int(np.ceil(N_exp))
    N_pool_true = A_pool.shape[-1]

    _check_number_of_nodes(N_pool_expected, N_pool_true)

    assert X_pool.shape == (batch_size, N_pool_expected, F)
    assert A_pool.shape == (batch_size, N_pool_expected, N_pool_expected)

    output_shape = [o.shape for o in output]
    _check_output_and_model_output_shapes(output_shape, model.output_shape) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:31,代码来源:test_pooling.py

示例14: _test_disjoint_mode

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def _test_disjoint_mode(layer, **kwargs):
    A = sp.block_diag([np.ones((N1, N1)), np.ones(
        (N2, N2)), np.ones((N3, N3))]).todense()
    X = np.random.normal(size=(N, F))
    I = np.array([0] * N1 + [1] * N2 + [2] * N3).astype(int)
    sparse = kwargs.pop('sparse', None) is not None

    A_in = Input(shape=(None,), sparse=sparse)
    X_in = Input(shape=(F,))
    I_in = Input(shape=(), dtype=tf.int32)

    layer_instance = layer(**kwargs)
    output = layer_instance([X_in, A_in, I_in])
    model = Model([X_in, A_in, I_in], output)
    output = model([X, A, I])
    X_pool, A_pool, I_pool, mask = output

    N_pool_expected = np.ceil(kwargs['ratio'] * N1) + \
                      np.ceil(kwargs['ratio'] * N2) + \
                      np.ceil(kwargs['ratio'] * N3)
    N_pool_expected = int(N_pool_expected)
    N_pool_true = A_pool.shape[0]

    _check_number_of_nodes(N_pool_expected, N_pool_true)

    assert X_pool.shape == (N_pool_expected, F)
    assert A_pool.shape == (N_pool_expected, N_pool_expected)
    assert I_pool.shape == (N_pool_expected,)

    output_shape = [o.shape for o in output]
    _check_output_and_model_output_shapes(output_shape, model.output_shape) 
开发者ID:danielegrattarola,项目名称:spektral,代码行数:33,代码来源:test_pooling.py

示例15: make_model

# 需要导入模块: from tensorflow import keras [as 别名]
# 或者: from tensorflow.keras import Input [as 别名]
def make_model(**kwargs) -> tf.keras.Model:
    # Model is based on MicronNet: https://arxiv.org/abs/1804.00497v3

    img_size = 48
    NUM_CLASSES = 43
    eps = 1e-6

    inputs = Input(shape=(img_size, img_size, 3))
    x = Conv2D(1, (1, 1), padding="same")(inputs)
    x = BatchNormalization(epsilon=eps)(x)
    x = Activation("relu")(x)
    x = Conv2D(29, (5, 5), padding="same")(x)
    x = BatchNormalization(epsilon=eps)(x)
    x = Activation("relu")(x)
    x = MaxPooling2D(pool_size=(3, 3), strides=2)(x)
    x = Conv2D(59, (3, 3), padding="same")(x)
    x = BatchNormalization(epsilon=eps)(x)
    x = Activation("relu")(x)
    x = MaxPooling2D(pool_size=(3, 3), strides=2)(x)
    x = Conv2D(74, (3, 3), padding="same")(x)
    x = BatchNormalization(epsilon=eps)(x)
    x = Activation("relu")(x)
    x = MaxPooling2D(pool_size=(3, 3), strides=2)(x)
    x = Flatten()(x)
    x = Dense(300)(x)
    x = Activation("relu")(x)
    x = BatchNormalization(epsilon=eps)(x)
    x = Dense(300, activation="relu")(x)
    predictions = Dense(NUM_CLASSES, activation="softmax")(x)

    model = Model(inputs=inputs, outputs=predictions)
    model.compile(
        optimizer=tf.keras.optimizers.SGD(
            lr=0.01, decay=1e-6, momentum=0.9, nesterov=True
        ),
        loss=tf.keras.losses.sparse_categorical_crossentropy,
        metrics=["accuracy"],
    )

    return model 
开发者ID:twosixlabs,项目名称:armory,代码行数:42,代码来源:micronnet_gtsrb.py


注:本文中的tensorflow.keras.Input方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。