本文整理汇总了Python中tensorflow.is_nan方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.is_nan方法的具体用法?Python tensorflow.is_nan怎么用?Python tensorflow.is_nan使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.is_nan方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: filter_groundtruth_with_nan_box_coordinates
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import is_nan [as 别名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
"""Filters out groundtruth with no bounding boxes.
Args:
tensor_dict: a dictionary of following groundtruth tensors -
fields.InputDataFields.groundtruth_boxes
fields.InputDataFields.groundtruth_classes
fields.InputDataFields.groundtruth_is_crowd
fields.InputDataFields.groundtruth_area
fields.InputDataFields.groundtruth_label_types
Returns:
a dictionary of tensors containing only the groundtruth that have bounding
boxes.
"""
groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
valid_indicator_vector = tf.logical_not(nan_indicator_vector)
valid_indices = tf.where(valid_indicator_vector)
return retain_groundtruth(tensor_dict, valid_indices)
示例2: filter_groundtruth_with_nan_box_coordinates
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import is_nan [as 别名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
"""Filters out groundtruth with no bounding boxes.
Args:
tensor_dict: a dictionary of following groundtruth tensors -
fields.InputDataFields.groundtruth_boxes
fields.InputDataFields.groundtruth_classes
fields.InputDataFields.groundtruth_keypoints
fields.InputDataFields.groundtruth_instance_masks
fields.InputDataFields.groundtruth_is_crowd
fields.InputDataFields.groundtruth_area
fields.InputDataFields.groundtruth_label_types
Returns:
a dictionary of tensors containing only the groundtruth that have bounding
boxes.
"""
groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
valid_indicator_vector = tf.logical_not(nan_indicator_vector)
valid_indices = tf.where(valid_indicator_vector)
return retain_groundtruth(tensor_dict, valid_indices)
示例3: filter_groundtruth_with_nan_box_coordinates
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import is_nan [as 别名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
"""Filters out groundtruth with no bounding boxes.
Args:
tensor_dict: a dictionary of following groundtruth tensors -
fields.InputDataFields.groundtruth_boxes
fields.InputDataFields.groundtruth_instance_masks
fields.InputDataFields.groundtruth_classes
fields.InputDataFields.groundtruth_is_crowd
fields.InputDataFields.groundtruth_area
fields.InputDataFields.groundtruth_label_types
Returns:
a dictionary of tensors containing only the groundtruth that have bounding
boxes.
"""
groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32(
tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0)
valid_indicator_vector = tf.logical_not(nan_indicator_vector)
valid_indices = tf.where(valid_indicator_vector)
return retain_groundtruth(tensor_dict, valid_indices)
示例4: get_cubic_root
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import is_nan [as 别名]
def get_cubic_root(self):
# We have the equation x^2 D^2 + (1-x)^4 * C / h_min^2
# where x = sqrt(mu).
# We substitute x, which is sqrt(mu), with x = y + 1.
# It gives y^3 + py = q
# where p = (D^2 h_min^2)/(2*C) and q = -p.
# We use the Vieta's substution to compute the root.
# There is only one real solution y (which is in [0, 1] ).
# http://mathworld.wolfram.com/VietasSubstitution.html
# assert_array = \
# [tf.Assert(tf.logical_not(tf.is_nan(self._dist_to_opt_avg) ), [self._dist_to_opt_avg,]),
# tf.Assert(tf.logical_not(tf.is_nan(self._h_min) ), [self._h_min,]),
# tf.Assert(tf.logical_not(tf.is_nan(self._grad_var) ), [self._grad_var,]),
# tf.Assert(tf.logical_not(tf.is_inf(self._dist_to_opt_avg) ), [self._dist_to_opt_avg,]),
# tf.Assert(tf.logical_not(tf.is_inf(self._h_min) ), [self._h_min,]),
# tf.Assert(tf.logical_not(tf.is_inf(self._grad_var) ), [self._grad_var,])]
# with tf.control_dependencies(assert_array):
# EPS in the numerator to prevent momentum being exactly one in case of 0 gradient
p = (self._dist_to_opt_avg + EPS)**2 * (self._h_min + EPS)**2 / 2 / (self._grad_var + EPS)
w3 = (-tf.sqrt(p**2 + 4.0 / 27.0 * p**3) - p) / 2.0
w = tf.sign(w3) * tf.pow(tf.abs(w3), 1.0/3.0)
y = w - p / 3.0 / (w + EPS)
x = y + 1
return x
示例5: _target_class_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import is_nan [as 别名]
def _target_class_loss(
self,
target_class,
box_scores,
box_class_probs_logits):
""" Evaluate target_class_loss w.r.t. the input.
"""
box_scores = K.squeeze(box_scores, axis=0)
box_class_probs_logits = K.squeeze(box_class_probs_logits, axis=0)
import tensorflow as tf
boi_idx = tf.where(box_scores[:, target_class] > self._score)
loss_box_class_conf = tf.reduce_mean(
tf.gather(box_class_probs_logits[:, target_class], boi_idx))
# Avoid the propagation of nan
return tf.cond(
tf.is_nan(loss_box_class_conf),
lambda: tf.constant(0.),
lambda: loss_box_class_conf)
示例6: testSqrt
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import is_nan [as 别名]
def testSqrt(self):
for dtype in [np.float16, np.float32, np.float64]:
fi = np.finfo(dtype)
for size in [1, 3, 4, 7, 8, 63, 64, 65]:
# For float32 Eigen uses Carmack's fast vectorized sqrt algorithm.
# It is not accurate for very large arguments, so we test for
# fi.max/100 instead of fi.max here.
for value in [fi.min, -2, -1, 0, fi.tiny, 1, 2, 1000, fi.max/100]:
x = np.full((size,), value, dtype=dtype)
np_y = np.sqrt(x)
np_nan = np.isnan(np_y)
with self.test_session(use_gpu=True):
tf_y = tf.sqrt(x)
tf_nan = tf.is_nan(tf_y)
if value < 0:
self.assertAllEqual(np_nan, tf_nan.eval())
else:
self.assertAllCloseAccordingToType(np_y, tf_y.eval())
示例7: testUniformNans
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import is_nan [as 别名]
def testUniformNans(self):
with self.test_session():
a = 10.0
b = [11.0, 100.0]
uniform = tf.contrib.distributions.Uniform(a=a, b=b)
no_nans = tf.constant(1.0)
nans = tf.constant(0.0) / tf.constant(0.0)
self.assertTrue(tf.is_nan(nans).eval())
with_nans = tf.stack([no_nans, nans])
pdf = uniform.pdf(with_nans)
is_nan = tf.is_nan(pdf).eval()
self.assertFalse(is_nan[0])
self.assertTrue(is_nan[1])
示例8: masked_mse_tf
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import is_nan [as 别名]
def masked_mse_tf(preds, labels, null_val=np.nan):
"""
Accuracy with masking.
:param preds:
:param labels:
:param null_val:
:return:
"""
if np.isnan(null_val):
mask = ~tf.is_nan(labels)
else:
mask = tf.not_equal(labels, null_val)
mask = tf.cast(mask, tf.float32)
mask /= tf.reduce_mean(mask)
mask = tf.where(tf.is_nan(mask), tf.zeros_like(mask), mask)
loss = tf.square(tf.subtract(preds, labels))
loss = loss * mask
loss = tf.where(tf.is_nan(loss), tf.zeros_like(loss), loss)
return tf.reduce_mean(loss)
示例9: masked_mae_tf
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import is_nan [as 别名]
def masked_mae_tf(preds, labels, null_val=np.nan):
"""
Accuracy with masking.
:param preds:
:param labels:
:param null_val:
:return:
"""
if np.isnan(null_val):
mask = ~tf.is_nan(labels)
else:
mask = tf.not_equal(labels, null_val)
mask = tf.cast(mask, tf.float32)
mask /= tf.reduce_mean(mask)
mask = tf.where(tf.is_nan(mask), tf.zeros_like(mask), mask)
loss = tf.abs(tf.subtract(preds, labels))
loss = loss * mask
loss = tf.where(tf.is_nan(loss), tf.zeros_like(loss), loss)
return tf.reduce_mean(loss)
示例10: solve
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import is_nan [as 别名]
def solve(H, b, max_update=1.0):
""" Solves the linear system Hx = b, H > 0"""
# small system, solve on cpu
with tf.device('/cpu:0'):
H = tf.cast(H, tf.float64)
b = tf.cast(b, tf.float64)
b = tf.expand_dims(b, -1)
x = cholesky_solve(H, b)
# replaces nans and clip large updates
bad_values = tf.is_nan(x)
x = tf.where(bad_values, tf.zeros_like(x), x)
x = tf.clip_by_value(x, -max_update, max_update)
x = tf.squeeze(x, -1)
x = tf.cast(x, tf.float32)
return x
# def solve(H, b):
# return tf.squeeze(tf.linalg.solve(H, tf.expand_dims(b, -1)), -1)
示例11: filter_groundtruth_with_nan_box_coordinates
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import is_nan [as 别名]
def filter_groundtruth_with_nan_box_coordinates(tensor_dict):
"""Filters out groundtruth with no bounding boxes.
Args:
tensor_dict: a dictionary of following groundtruth tensors -
fields.InputDataFields.groundtruth_boxes
fields.InputDataFields.groundtruth_classes
fields.InputDataFields.groundtruth_confidences
fields.InputDataFields.groundtruth_keypoints
fields.InputDataFields.groundtruth_instance_masks
fields.InputDataFields.groundtruth_is_crowd
fields.InputDataFields.groundtruth_area
fields.InputDataFields.groundtruth_label_types
Returns:
a dictionary of tensors containing only the groundtruth that have bounding
boxes.
"""
groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
nan_indicator_vector = tf.greater(tf.reduce_sum(tf.cast(
tf.is_nan(groundtruth_boxes), dtype=tf.int32), reduction_indices=[1]), 0)
valid_indicator_vector = tf.logical_not(nan_indicator_vector)
valid_indices = tf.where(valid_indicator_vector)
return retain_groundtruth(tensor_dict, valid_indices)
开发者ID:ShivangShekhar,项目名称:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代码行数:27,代码来源:ops.py