本文整理汇总了Python中tensorflow.int32方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.int32方法的具体用法?Python tensorflow.int32怎么用?Python tensorflow.int32使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.int32方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def __init__(self, resolution=1024, num_channels=3, dtype='uint8', dynamic_range=[0,255], label_size=0, label_dtype='float32'):
self.resolution = resolution
self.resolution_log2 = int(np.log2(resolution))
self.shape = [num_channels, resolution, resolution]
self.dtype = dtype
self.dynamic_range = dynamic_range
self.label_size = label_size
self.label_dtype = label_dtype
self._tf_minibatch_var = None
self._tf_lod_var = None
self._tf_minibatch_np = None
self._tf_labels_np = None
assert self.resolution == 2 ** self.resolution_log2
with tf.name_scope('Dataset'):
self._tf_minibatch_var = tf.Variable(np.int32(0), name='minibatch_var')
self._tf_lod_var = tf.Variable(np.int32(0), name='lod_var')
示例2: structure
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def structure(self, input_tensor):
"""
Args:
input_tensor: NHWC
"""
rnd = tf.random_uniform((), 135, 160, dtype=tf.int32)
rescaled = tf.image.resize_images(
input_tensor, [rnd, rnd], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
h_rem = 160 - rnd
w_rem = 160 - rnd
pad_left = tf.random_uniform((), 0, w_rem, dtype=tf.int32)
pad_right = w_rem - pad_left
pad_top = tf.random_uniform((), 0, h_rem, dtype=tf.int32)
pad_bottom = h_rem - pad_top
padded = tf.pad(rescaled, [[0, 0], [pad_top, pad_bottom], [
pad_left, pad_right], [0, 0]])
padded.set_shape((input_tensor.shape[0], 160, 160, 3))
output = tf.cond(tf.random_uniform(shape=[1])[0] < tf.constant(0.9),
lambda: padded, lambda: input_tensor)
return output
示例3: time_stretch
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def time_stretch(
spectrogram,
factor=1.0,
method=tf.image.ResizeMethod.BILINEAR):
""" Time stretch a spectrogram preserving shape in tensorflow. Note that
this is an approximation in the frequency domain.
:param spectrogram: Input spectrogram to be time stretched as tensor.
:param factor: (Optional) Time stretch factor, must be >0, default to 1.
:param mehtod: (Optional) Interpolation method, default to BILINEAR.
:returns: Time stretched spectrogram as tensor with same shape.
"""
T = tf.shape(spectrogram)[0]
T_ts = tf.cast(tf.cast(T, tf.float32) * factor, tf.int32)[0]
F = tf.shape(spectrogram)[1]
ts_spec = tf.image.resize_images(
spectrogram,
[T_ts, F],
method=method,
align_corners=True)
return tf.image.resize_image_with_crop_or_pad(ts_spec, T, F)
示例4: pitch_shift
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def pitch_shift(
spectrogram,
semitone_shift=0.0,
method=tf.image.ResizeMethod.BILINEAR):
""" Pitch shift a spectrogram preserving shape in tensorflow. Note that
this is an approximation in the frequency domain.
:param spectrogram: Input spectrogram to be pitch shifted as tensor.
:param semitone_shift: (Optional) Pitch shift in semitone, default to 0.0.
:param mehtod: (Optional) Interpolation method, default to BILINEAR.
:returns: Pitch shifted spectrogram (same shape as spectrogram).
"""
factor = 2 ** (semitone_shift / 12.)
T = tf.shape(spectrogram)[0]
F = tf.shape(spectrogram)[1]
F_ps = tf.cast(tf.cast(F, tf.float32) * factor, tf.int32)[0]
ps_spec = tf.image.resize_images(
spectrogram,
[T, F_ps],
method=method,
align_corners=True)
paddings = [[0, 0], [0, tf.maximum(0, F - F_ps)], [0, 0]]
return tf.pad(ps_spec[:, :F, :], paddings, 'CONSTANT')
示例5: input_fn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def input_fn(partition, training, batch_size):
"""Generate an input_fn for the Estimator."""
def _input_fn():
if partition == "train":
dataset = tf.data.Dataset.from_generator(
generator(x_train, y_train), (tf.float32, tf.int32), ((28, 28), ()))
else:
dataset = tf.data.Dataset.from_generator(
generator(x_test, y_test), (tf.float32, tf.int32), ((28, 28), ()))
if training:
dataset = dataset.shuffle(10 * batch_size, seed=RANDOM_SEED).repeat()
dataset = dataset.map(preprocess_image).batch(batch_size)
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
return features, labels
return _input_fn
示例6: read_from_tfrecord
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def read_from_tfrecord(filenames):
tfrecord_file_queue = tf.train.string_input_producer(filenames, name='queue')
reader = tf.TFRecordReader()
_, tfrecord_serialized = reader.read(tfrecord_file_queue)
tfrecord_features = tf.parse_single_example(tfrecord_serialized, features={
'label': tf.FixedLenFeature([],tf.int64),
'shape': tf.FixedLenFeature([],tf.string),
'image': tf.FixedLenFeature([],tf.string),
}, name='features')
image = tf.decode_raw(tfrecord_features['image'], tf.uint8)
shape = tf.decode_raw(tfrecord_features['shape'], tf.int32)
image = tf.reshape(image, shape)
label = tfrecord_features['label']
return label, shape, image
示例7: main
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def main():
dataset = tf.data.Dataset.from_generator(gen, (tf.int32, tf.int32),
(tf.TensorShape([BATCH_SIZE]),
tf.TensorShape([BATCH_SIZE, 1])))
optimizer = tf.compat.v1.train.GradientDescentOptimizer(LEARNING_RATE)
model = Word2Vec(vocab_size=VOCAB_SIZE, embed_size=EMBED_SIZE)
grad_fn = tfe.implicit_value_and_gradients(model.compute_loss)
total_loss = 0.0
num_train_steps = 0
while num_train_steps < NUM_TRAIN_STEPS:
for center_words, target_words in tfe.Iterator(dataset):
if num_train_steps >= NUM_TRAIN_STEPS:
break
loss_batch, grads = grad_fn(center_words, target_words)
total_loss += loss_batch
optimizer.apply_gradients(grads)
if (num_train_steps + 1) % SKIP_STEP == 0:
print('Average loss at step {}: {:5.1f}'.format(
num_train_steps, total_loss / SKIP_STEP
))
total_loss = 0.0
num_train_steps += 1
示例8: apply_with_random_selector
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def apply_with_random_selector(x, func, num_cases):
"""Computes func(x, sel), with sel sampled from [0...num_cases-1].
Args:
x: input Tensor.
func: Python function to apply.
num_cases: Python int32, number of cases to sample sel from.
Returns:
The result of func(x, sel), where func receives the value of the
selector as a python integer, but sel is sampled dynamically.
"""
sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32)
# Pass the real x only to one of the func calls.
return control_flow_ops.merge([
func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case)
for case in range(num_cases)])[0]
示例9: _aspect_preserving_resize
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def _aspect_preserving_resize(image, smallest_side):
"""Resize images preserving the original aspect ratio.
Args:
image: A 3-D image `Tensor`.
smallest_side: A python integer or scalar `Tensor` indicating the size of
the smallest side after resize.
Returns:
resized_image: A 3-D tensor containing the resized image.
"""
smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32)
shape = tf.shape(image)
height = shape[0]
width = shape[1]
new_height, new_width = _smallest_size_at_least(height, width, smallest_side)
image = tf.expand_dims(image, 0)
resized_image = tf.image.resize_bilinear(image, [new_height, new_width],
align_corners=False)
resized_image = tf.squeeze(resized_image)
resized_image.set_shape([None, None, 3])
return resized_image
示例10: read_analogies
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def read_analogies(self):
"""Reads through the analogy question file.
Returns:
questions: a [n, 4] numpy array containing the analogy question's
word ids.
questions_skipped: questions skipped due to unknown words.
"""
questions = []
questions_skipped = 0
with open(self._options.eval_data, "rb") as analogy_f:
for line in analogy_f:
if line.startswith(b":"): # Skip comments.
continue
words = line.strip().lower().split(b" ")
ids = [self._word2id.get(w.strip()) for w in words]
if None in ids or len(ids) != 4:
questions_skipped += 1
else:
questions.append(np.array(ids))
print("Eval analogy file: ", self._options.eval_data)
print("Questions: ", len(questions))
print("Skipped: ", questions_skipped)
self._analogy_questions = np.array(questions, dtype=np.int32)
示例11: apply_with_random_selector
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def apply_with_random_selector(x, func, num_cases):
"""Computes func(x, sel), with sel sampled from [0...num_cases-1].
Args:
x: input Tensor.
func: Python function to apply.
num_cases: Python int32, number of cases to sample sel from.
Returns:
The result of func(x, sel), where func receives the value of the
selector as a python integer, but sel is sampled dynamically.
"""
sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32)
# Pass the real x only to one of the func calls.
return control_flow_ops.merge([
func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case)
for case in range(num_cases)
])[0]
示例12: get_hash_slots
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def get_hash_slots(self, query):
"""Gets hashed-to buckets for batch of queries.
Args:
query: 2-d Tensor of query vectors.
Returns:
A list of hashed-to buckets for each hash function.
"""
binary_hash = [
tf.less(tf.matmul(query, self.hash_vecs[i], transpose_b=True), 0)
for i in xrange(self.num_libraries)]
hash_slot_idxs = [
tf.reduce_sum(
tf.to_int32(binary_hash[i]) *
tf.constant([[2 ** i for i in xrange(self.num_hashes)]],
dtype=tf.int32), 1)
for i in xrange(self.num_libraries)]
return hash_slot_idxs
示例13: batch_of_random_bools
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def batch_of_random_bools(batch_size, n):
"""Return a batch of random "boolean" numbers.
Args:
batch_size: Batch size dimension of returned tensor.
n: number of entries per batch.
Returns:
A [batch_size, n] tensor of "boolean" numbers, where each number is
preresented as -1 or 1.
"""
as_int = tf.random_uniform(
[batch_size, n], minval=0, maxval=2, dtype=tf.int32)
expanded_range = (as_int * 2) - 1
return tf.cast(expanded_range, tf.float32)
示例14: test_construct_anchor_grid_unnormalized
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def test_construct_anchor_grid_unnormalized(self):
base_anchor_size = tf.constant([1, 1], dtype=tf.float32)
box_specs_list = [[(1.0, 1.0)]]
exp_anchor_corners = [[0., 0., 320., 320.], [0., 320., 320., 640.]]
anchor_generator = ag.MultipleGridAnchorGenerator(box_specs_list,
base_anchor_size)
anchors = anchor_generator.generate(
feature_map_shape_list=[(tf.constant(1, dtype=tf.int32), tf.constant(
2, dtype=tf.int32))],
im_height=320,
im_width=640)
anchor_corners = anchors.get()
with self.test_session():
anchor_corners_out = anchor_corners.eval()
self.assertAllClose(anchor_corners_out, exp_anchor_corners)
示例15: _reshape_instance_masks
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import int32 [as 别名]
def _reshape_instance_masks(self, keys_to_tensors):
"""Reshape instance segmentation masks.
The instance segmentation masks are reshaped to [num_instances, height,
width] and cast to boolean type to save memory.
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 3-D boolean tensor of shape [num_instances, height, width].
"""
masks = keys_to_tensors['image/segmentation/object']
if isinstance(masks, tf.SparseTensor):
masks = tf.sparse_tensor_to_dense(masks)
height = keys_to_tensors['image/height']
width = keys_to_tensors['image/width']
to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)
return tf.cast(tf.reshape(masks, to_shape), tf.bool)