当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.image方法代码示例

本文整理汇总了Python中tensorflow.image方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.image方法的具体用法?Python tensorflow.image怎么用?Python tensorflow.image使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.image方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testNormalizeImage

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testNormalizeImage(self):
    preprocess_options = [(preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 256,
        'target_minval': -1,
        'target_maxval': 1
    })]
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    images_expected = self.expectedImagesAfterNormalization()

    with self.test_session() as sess:
      (images_, images_expected_) = sess.run(
          [images, images_expected])
      images_shape_ = images_.shape
      images_expected_shape_ = images_expected_.shape
      expected_shape = [1, 4, 4, 3]
      self.assertAllEqual(images_expected_shape_, images_shape_)
      self.assertAllEqual(images_shape_, expected_shape)
      self.assertAllClose(images_, images_expected_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:24,代码来源:preprocessor_test.py

示例2: testRandomPixelValueScale

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomPixelValueScale(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_pixel_value_scale, {}))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_min = tf.to_float(images) * 0.9 / 255.0
    images_max = tf.to_float(images) * 1.1 / 255.0
    images = tensor_dict[fields.InputDataFields.image]
    values_greater = tf.greater_equal(images, images_min)
    values_less = tf.less_equal(images, images_max)
    values_true = tf.fill([1, 4, 4, 3], True)
    with self.test_session() as sess:
      (values_greater_, values_less_, values_true_) = sess.run(
          [values_greater, values_less, values_true])
      self.assertAllClose(values_greater_, values_true_)
      self.assertAllClose(values_less_, values_true_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:25,代码来源:preprocessor_test.py

示例3: testRandomImageScale

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomImageScale(self):
    preprocess_options = [(preprocessor.random_image_scale, {})]
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images_scaled = tensor_dict[fields.InputDataFields.image]
    images_original_shape = tf.shape(images_original)
    images_scaled_shape = tf.shape(images_scaled)
    with self.test_session() as sess:
      (images_original_shape_, images_scaled_shape_) = sess.run(
          [images_original_shape, images_scaled_shape])
      self.assertTrue(
          images_original_shape_[1] * 0.5 <= images_scaled_shape_[1])
      self.assertTrue(
          images_original_shape_[1] * 2.0 >= images_scaled_shape_[1])
      self.assertTrue(
          images_original_shape_[2] * 0.5 <= images_scaled_shape_[2])
      self.assertTrue(
          images_original_shape_[2] * 2.0 >= images_scaled_shape_[2]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:21,代码来源:preprocessor_test.py

示例4: testRandomAdjustBrightness

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomAdjustBrightness(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_brightness, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_bright = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_bright_shape = tf.shape(images_bright)
    with self.test_session() as sess:
      (image_original_shape_, image_bright_shape_) = sess.run(
          [image_original_shape, image_bright_shape])
      self.assertAllEqual(image_original_shape_, image_bright_shape_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:21,代码来源:preprocessor_test.py

示例5: testRandomAdjustContrast

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomAdjustContrast(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_contrast, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_contrast = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_contrast_shape = tf.shape(images_contrast)
    with self.test_session() as sess:
      (image_original_shape_, image_contrast_shape_) = sess.run(
          [image_original_shape, image_contrast_shape])
      self.assertAllEqual(image_original_shape_, image_contrast_shape_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:21,代码来源:preprocessor_test.py

示例6: testRandomAdjustHue

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomAdjustHue(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_hue, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_hue = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_hue_shape = tf.shape(images_hue)
    with self.test_session() as sess:
      (image_original_shape_, image_hue_shape_) = sess.run(
          [image_original_shape, image_hue_shape])
      self.assertAllEqual(image_original_shape_, image_hue_shape_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:21,代码来源:preprocessor_test.py

示例7: testRandomDistortColor

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomDistortColor(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_distort_color, {}))
    images_original = self.createTestImages()
    images_original_shape = tf.shape(images_original)
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_distorted_color = tensor_dict[fields.InputDataFields.image]
    images_distorted_color_shape = tf.shape(images_distorted_color)
    with self.test_session() as sess:
      (images_original_shape_, images_distorted_color_shape_) = sess.run(
          [images_original_shape, images_distorted_color_shape])
      self.assertAllEqual(images_original_shape_, images_distorted_color_shape_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:21,代码来源:preprocessor_test.py

示例8: testRandomBlackPatches

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomBlackPatches(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_black_patches, {
        'size_to_image_ratio': 0.5
    }))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    blacked_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                  preprocessing_options)
    blacked_images = blacked_tensor_dict[fields.InputDataFields.image]
    images_shape = tf.shape(images)
    blacked_images_shape = tf.shape(blacked_images)

    with self.test_session() as sess:
      (images_shape_, blacked_images_shape_) = sess.run(
          [images_shape, blacked_images_shape])
      self.assertAllEqual(images_shape_, blacked_images_shape_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:25,代码来源:preprocessor_test.py

示例9: testRandomResizeMethod

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomResizeMethod(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_resize_method, {
        'target_size': (75, 150)
    }))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    resized_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                  preprocessing_options)
    resized_images = resized_tensor_dict[fields.InputDataFields.image]
    resized_images_shape = tf.shape(resized_images)
    expected_images_shape = tf.constant([1, 75, 150, 3], dtype=tf.int32)

    with self.test_session() as sess:
      (expected_images_shape_, resized_images_shape_) = sess.run(
          [expected_images_shape, resized_images_shape])
      self.assertAllEqual(expected_images_shape_,
                          resized_images_shape_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:26,代码来源:preprocessor_test.py

示例10: testResizeToRange

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testResizeToRange(self):
    """Tests image resizing, checking output sizes."""
    in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]]
    min_dim = 50
    max_dim = 100
    expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]]

    for in_shape, expected_shape in zip(in_shape_list, expected_shape_list):
      in_image = tf.random_uniform(in_shape)
      out_image = preprocessor.resize_to_range(
          in_image, min_dimension=min_dim, max_dimension=max_dim)
      out_image_shape = tf.shape(out_image)

      with self.test_session() as sess:
        out_image_shape = sess.run(out_image_shape)
        self.assertAllEqual(out_image_shape, expected_shape) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:18,代码来源:preprocessor_test.py

示例11: testResizeToRangeSameMinMax

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testResizeToRangeSameMinMax(self):
    """Tests image resizing, checking output sizes."""
    in_shape_list = [[312, 312, 3], [299, 299, 3]]
    min_dim = 320
    max_dim = 320
    expected_shape_list = [[320, 320, 3], [320, 320, 3]]

    for in_shape, expected_shape in zip(in_shape_list, expected_shape_list):
      in_image = tf.random_uniform(in_shape)
      out_image = preprocessor.resize_to_range(
          in_image, min_dimension=min_dim, max_dimension=max_dim)
      out_image_shape = tf.shape(out_image)

      with self.test_session() as sess:
        out_image_shape = sess.run(out_image_shape)
        self.assertAllEqual(out_image_shape, expected_shape) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:18,代码来源:preprocessor_test.py

示例12: testRandomHorizontalFlipWithEmptyBoxes

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomHorizontalFlipWithEmptyBoxes(self):
    preprocess_options = [(preprocessor.random_horizontal_flip, {})]
    images = self.expectedImagesAfterNormalization()
    boxes = self.createEmptyTestBoxes()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes}
    images_expected1 = self.expectedImagesAfterLeftRightFlip()
    boxes_expected = self.createEmptyTestBoxes()
    images_expected2 = images
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]

    images_diff1 = tf.squared_difference(images, images_expected1)
    images_diff2 = tf.squared_difference(images, images_expected2)
    images_diff = tf.multiply(images_diff1, images_diff2)
    images_diff_expected = tf.zeros_like(images_diff)

    with self.test_session() as sess:
      (images_diff_, images_diff_expected_, boxes_,
       boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes,
                                    boxes_expected])
      self.assertAllClose(boxes_, boxes_expected_)
      self.assertAllClose(images_diff_, images_diff_expected_) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:26,代码来源:preprocessor_test.py

示例13: testRandomVerticalFlipWithEmptyBoxes

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomVerticalFlipWithEmptyBoxes(self):
    preprocess_options = [(preprocessor.random_vertical_flip, {})]
    images = self.expectedImagesAfterNormalization()
    boxes = self.createEmptyTestBoxes()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes}
    images_expected1 = self.expectedImagesAfterUpDownFlip()
    boxes_expected = self.createEmptyTestBoxes()
    images_expected2 = images
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]

    images_diff1 = tf.squared_difference(images, images_expected1)
    images_diff2 = tf.squared_difference(images, images_expected2)
    images_diff = tf.multiply(images_diff1, images_diff2)
    images_diff_expected = tf.zeros_like(images_diff)

    with self.test_session() as sess:
      (images_diff_, images_diff_expected_, boxes_,
       boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes,
                                    boxes_expected])
      self.assertAllClose(boxes_, boxes_expected_)
      self.assertAllClose(images_diff_, images_diff_expected_) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:26,代码来源:preprocessor_test.py

示例14: testRandomRotation90WithEmptyBoxes

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomRotation90WithEmptyBoxes(self):
    preprocess_options = [(preprocessor.random_rotation90, {})]
    images = self.expectedImagesAfterNormalization()
    boxes = self.createEmptyTestBoxes()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes}
    images_expected1 = self.expectedImagesAfterRot90()
    boxes_expected = self.createEmptyTestBoxes()
    images_expected2 = images
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]

    images_diff1 = tf.squared_difference(images, images_expected1)
    images_diff2 = tf.squared_difference(images, images_expected2)
    images_diff = tf.multiply(images_diff1, images_diff2)
    images_diff_expected = tf.zeros_like(images_diff)

    with self.test_session() as sess:
      (images_diff_, images_diff_expected_, boxes_,
       boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes,
                                    boxes_expected])
      self.assertAllClose(boxes_, boxes_expected_)
      self.assertAllClose(images_diff_, images_diff_expected_) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:26,代码来源:preprocessor_test.py

示例15: testRandomHorizontalFlip

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import image [as 别名]
def testRandomHorizontalFlip(self):
    preprocess_options = [(preprocessor.random_horizontal_flip, {})]
    images = self.expectedImagesAfterNormalization()
    boxes = self.createTestBoxes()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes}
    images_expected1 = self.expectedImagesAfterMirroring()
    boxes_expected1 = self.expectedBoxesAfterMirroring()
    images_expected2 = images
    boxes_expected2 = boxes
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]

    boxes_diff1 = tf.squared_difference(boxes, boxes_expected1)
    boxes_diff2 = tf.squared_difference(boxes, boxes_expected2)
    boxes_diff = tf.multiply(boxes_diff1, boxes_diff2)
    boxes_diff_expected = tf.zeros_like(boxes_diff)

    images_diff1 = tf.squared_difference(images, images_expected1)
    images_diff2 = tf.squared_difference(images, images_expected2)
    images_diff = tf.multiply(images_diff1, images_diff2)
    images_diff_expected = tf.zeros_like(images_diff)

    with self.test_session() as sess:
      (images_diff_, images_diff_expected_, boxes_diff_,
       boxes_diff_expected_) = sess.run([images_diff, images_diff_expected,
                                         boxes_diff, boxes_diff_expected])
      self.assertAllClose(boxes_diff_, boxes_diff_expected_)
      self.assertAllClose(images_diff_, images_diff_expected_) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:32,代码来源:preprocessor_test.py


注:本文中的tensorflow.image方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。