当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.global_variables方法代码示例

本文整理汇总了Python中tensorflow.global_variables方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.global_variables方法的具体用法?Python tensorflow.global_variables怎么用?Python tensorflow.global_variables使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.global_variables方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: to_darknet

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def to_darknet(self):
    darknet_ckpt = self.darknet

    with self.graph.as_default() as g:
        for var in tf.global_variables():
            name = var.name.split(':')[0]
            var_name = name.split('-')
            l_idx = int(var_name[0])
            w_sig = var_name[1].split('/')[-1]
            l = darknet_ckpt.layers[l_idx]
            l.w[w_sig] = var.eval(self.sess)

    for layer in darknet_ckpt.layers:
        for ph in layer.h:
            layer.h[ph] = None

    return darknet_ckpt 
开发者ID:AmeyaWagh,项目名称:Traffic_sign_detection_YOLO,代码行数:19,代码来源:help.py

示例2: init_uninited_vars

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def init_uninited_vars(vars=None):
    if vars is None: vars = tf.global_variables()
    test_vars = []; test_ops = []
    with tf.control_dependencies(None): # ignore surrounding control_dependencies
        for var in vars:
            assert is_tf_expression(var)
            try:
                tf.get_default_graph().get_tensor_by_name(var.name.replace(':0', '/IsVariableInitialized:0'))
            except KeyError:
                # Op does not exist => variable may be uninitialized.
                test_vars.append(var)
                with absolute_name_scope(var.name.split(':')[0]):
                    test_ops.append(tf.is_variable_initialized(var))
    init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
    run([var.initializer for var in init_vars])

#----------------------------------------------------------------------------
# Set the values of given tf.Variables.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
#   tfutil.run([tf.assign(var, value) for var, value in var_to_value_dict.items()] 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:22,代码来源:tfutil.py

示例3: initialize_uninitialized_global_variables

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def initialize_uninitialized_global_variables(sess):
    """
    Only initializes the variables of a TensorFlow session that were not
    already initialized.
    :param sess: the TensorFlow session
    :return:
    """
    # List all global variables
    global_vars = tf.global_variables()

    # Find initialized status for all variables
    is_var_init = [tf.is_variable_initialized(var) for var in global_vars]
    is_initialized = sess.run(is_var_init)

    # List all variables that were not initialized previously
    not_initialized_vars = [var for (var, init) in
                            zip(global_vars, is_initialized) if not init]

    # Initialize all uninitialized variables found, if any
    if len(not_initialized_vars):
        sess.run(tf.variables_initializer(not_initialized_vars)) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:23,代码来源:utils_tf.py

示例4: define_saver

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def define_saver(exclude=None):
  """Create a saver for the variables we want to checkpoint.

  Args:
    exclude: List of regexes to match variable names to exclude.

  Returns:
    Saver object.
  """
  variables = []
  exclude = exclude or []
  exclude = [re.compile(regex) for regex in exclude]
  for variable in tf.global_variables():
    if any(regex.match(variable.name) for regex in exclude):
      continue
    variables.append(variable)
  saver = tf.train.Saver(variables, keep_checkpoint_every_n_hours=5)
  return saver 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:20,代码来源:utility.py

示例5: _start_session

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def _start_session(self):
        """
        Starts the Tensorflow Session

        :return: None
        """
        self.sess.run(tf.global_variables_initializer())
        # initialize the saver node
        # print tf.GraphKeys.GLOBAL_VARIABLES
        self.saver = tf.train.Saver(tf.global_variables())
        # get the latest checkpoint
        last_checkpoint_path = self.checkpointer.get_last_checkpoint()
        if last_checkpoint_path is not None:
            print 'Previous saved tensorflow objects found... Extracting...'
            # restore the tensorflow variables
            self.saver.restore(self.sess, last_checkpoint_path)
            print 'Extraction Complete. Moving Forward....' 
开发者ID:harpribot,项目名称:deep-summarization,代码行数:19,代码来源:sequenceNet.py

示例6: testVarNames

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def testVarNames(self):
    with tf.Graph().as_default():
      model, features = get_model(
          mode=tf.estimator.ModeKeys.PREDICT,
          model_cls=transformer.TransformerScorer)
      _ = model.infer(features)
      scorer_vars = [v.name for v in tf.global_variables()]

    with tf.Graph().as_default():
      model, features = get_model(
          mode=tf.estimator.ModeKeys.EVAL,
          model_cls=transformer.TransformerScorer)
      _ = model(features)
      scorer_eval_vars = [v.name for v in tf.global_variables()]

    with tf.Graph().as_default():
      model, features = get_model(
          mode=tf.estimator.ModeKeys.EVAL,
          model_cls=transformer.Transformer)
      _ = model(features)
      transformer_vars = [v.name for v in tf.global_variables()]

    self.assertEqual(sorted(scorer_vars), sorted(transformer_vars))
    self.assertEqual(sorted(scorer_eval_vars), sorted(transformer_vars)) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:26,代码来源:transformer_test.py

示例7: underlying_variable

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def underlying_variable(t):
  """Find the underlying tf.Variable object.

  Args:
    t: a Tensor

  Returns:
    tf.Variable.
  """
  t = underlying_variable_ref(t)
  assert t is not None
  # make sure that the graph has a variable index and that it is up-to-date
  if not hasattr(tf.get_default_graph(), "var_index"):
    tf.get_default_graph().var_index = {}
  var_index = tf.get_default_graph().var_index
  for v in tf.global_variables()[len(var_index):]:
    var_index[v.name] = v
  return var_index[t.name] 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:20,代码来源:common_layers.py

示例8: main

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def main(tiny):
  if tiny:
    model = YOLOv3_tiny(n_classes=80,
                        iou_threshold=0.5,
                        confidence_threshold=0.5)
  else:
    model = YOLOv3(n_classes=80,
                   iou_threshold=0.5,
                   confidence_threshold=0.5)

  inputs = tf.placeholder(tf.float32, [1, 416, 416, 3])
  model(inputs)
  model_vars = tf.global_variables(scope=model.scope)
  if tiny:
    assign_ops = load_weights_tiny(model_vars, './weights/yolov3-tiny.weights')
  else:
    assign_ops = load_weights(model_vars, './weights/yolov3.weights')

  saver = tf.train.Saver(tf.global_variables(scope=model.scope))
  with tf.Session() as sess:
    save_path = './weights/model-tiny.ckpt' if tiny else './weights/model.ckpt'
    sess.run(assign_ops)
    saver.save(sess, save_path)
    print("Model Saved at \"" + save_path + "\"") 
开发者ID:kcosta42,项目名称:Tensorflow-YOLOv3,代码行数:26,代码来源:convert_weights.py

示例9: convert_to_coverage_model

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def convert_to_coverage_model(self):
    """Load non-coverage checkpoint, add initialized extra variables for coverage, and save as new checkpoint"""
    tf.logging.info("converting non-coverage model to coverage model..")

    # initialize an entire coverage model from scratch
    sess = tf.Session(config=util.get_config())
    print("initializing everything...")
    sess.run(tf.global_variables_initializer())

    # load all non-coverage weights from checkpoint
    saver = tf.train.Saver([v for v in tf.global_variables() if "coverage" not in v.name and "Adagrad" not in v.name])
    print("restoring non-coverage variables...")
    curr_ckpt = util.load_ckpt(saver, sess)
    print("restored.")

    # save this model and quit
    new_fname = curr_ckpt + '_cov_init'
    print("saving model to %s..." % (new_fname))
    new_saver = tf.train.Saver() # this one will save all variables that now exist
    new_saver.save(sess, new_fname)
    print("saved.")
    exit() 
开发者ID:yaserkl,项目名称:TransferRL,代码行数:24,代码来源:run_summarization.py

示例10: convert_to_reinforce_model

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def convert_to_reinforce_model(self):
    """Load non-reinforce checkpoint, add initialized extra variables for reinforce, and save as new checkpoint"""
    tf.logging.info("converting non-reinforce model to reinforce model..")

    # initialize an entire reinforce model from scratch
    sess = tf.Session(config=util.get_config())
    print("initializing everything...")
    sess.run(tf.global_variables_initializer())

    # load all non-reinforce weights from checkpoint
    saver = tf.train.Saver([v for v in tf.global_variables() if "reinforce" not in v.name and "Adagrad" not in v.name])
    print("restoring non-reinforce variables...")
    curr_ckpt = util.load_ckpt(saver, sess)
    print("restored.")

    # save this model and quit
    new_fname = curr_ckpt + '_rl_init'
    print("saving model to %s..." % (new_fname))
    new_saver = tf.train.Saver() # this one will save all variables that now exist
    new_saver.save(sess, new_fname)
    print("saved.")
    exit() 
开发者ID:yaserkl,项目名称:TransferRL,代码行数:24,代码来源:run_summarization.py

示例11: _init_pos_model

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def _init_pos_model(self, session):
        """Create POS Tagger model and initialize with random or load parameters in session."""
        # initilize config
        config_dict = load_config(self.model_config_path)
        config = get_config(config_dict, self.name)
        config.batch_size = 1
        config.num_steps = 1 # iterator one token per time
        model_var_scope = get_model_var_scope(self.var_scope, self.name)
        print ("NOTICE: Input POS Model Var Scope Name '%s'" % model_var_scope)
        # Check if self.model already exist
        if self.model is None:
            with tf.variable_scope(model_var_scope, tf.AUTO_REUSE):
                self.model = pos_model.POSTagger(is_training=False, config=config) # save object after is_training
        # Load Specific .data* ckpt file
        if len(glob.glob(self.ckpt_path + '.data*')) > 0: # file exist with pattern: 'pos.ckpt.data*'
            print("NOTICE: Loading model parameters from %s" % self.ckpt_path)
            all_vars = tf.global_variables()
            model_vars = [k for k in all_vars if model_var_scope in k.name.split("/")]
            tf.train.Saver(model_vars).restore(session, self.ckpt_path)
        else:
            print("NOTICE: Model not found, Try to run method: deepnlp.download(module='pos', name='%s')" % self.name)
            print("NOTICE: Created with fresh parameters.")
            session.run(tf.global_variables_initializer()) 
开发者ID:rockingdingo,项目名称:deepnlp,代码行数:25,代码来源:pos_tagger.py

示例12: _checkpoint_var_search

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def _checkpoint_var_search(self, checkpoint_path):
        reader = tf.train.NewCheckpointReader(checkpoint_path)
        saved_shapes = reader.get_variable_to_shape_map()
        model_names = tf.model_variables()  # Used by tf.slim layers
        if not len(tf.model_variables()):
            model_names = tf.global_variables()  # Fallback when slim is not used
        model_names = set([v.name.split(':')[0] for v in model_names])
        checkpoint_names = set(saved_shapes.keys())
        found_names = model_names & checkpoint_names
        missing_names = model_names - checkpoint_names
        shape_conflicts = set()
        restored = []
        with tf.variable_scope('', reuse=True):
            for name in found_names:
                # print(tf.global_variables())
                # print(name, name in model_names, name in checkpoint_names)
                var = tf.get_variable(name)
                var_shape = var.get_shape().as_list()
                if var_shape == saved_shapes[name]:
                    restored.append(var)
                else:
                    shape_conflicts.add(name)
        found_names -= shape_conflicts
        return (restored, sorted(found_names),
                sorted(missing_names), sorted(shape_conflicts)) 
开发者ID:ethz-asl,项目名称:hierarchical_loc,代码行数:27,代码来源:base_model.py

示例13: setSavers

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def setSavers(model):
    saver = tf.train.Saver(max_to_keep = config.weightsToKeep)

    subsetSaver = None
    if config.saveSubset:
        isRelevant = lambda var: any(s in var.name for s in config.varSubset)
        relevantVars = [var for var in tf.global_variables() if isRelevant(var)]
        subsetSaver = tf.train.Saver(relevantVars, max_to_keep = config.weightsToKeep, allow_empty = True)
    
    emaSaver = None
    if config.useEMA: 
        emaSaver = tf.train.Saver(model.emaDict, max_to_keep = config.weightsToKeep)

    return {
        "saver": saver,
        "subsetSaver": subsetSaver,
        "emaSaver": emaSaver
    }

################################### restore / initialize weights ##################################
# Restores weights of specified / last epoch if on restore mod.
# Otherwise, initializes weights. 
开发者ID:stanfordnlp,项目名称:mac-network,代码行数:24,代码来源:main.py

示例14: restore_from_classification_checkpoint_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def restore_from_classification_checkpoint_fn(self, feature_extractor_scope):
    """Returns a map of variables to load from a foreign checkpoint.

    Note that this overrides the default implementation in
    ssd_meta_arch.SSDFeatureExtractor which does not work for PNASNet
    checkpoints.

    Args:
      feature_extractor_scope: A scope name for the first stage feature
        extractor.

    Returns:
      A dict mapping variable names (to load from a checkpoint) to variables in
      the model graph.
    """
    variables_to_restore = {}
    for variable in tf.global_variables():
      if variable.op.name.startswith(feature_extractor_scope):
        var_name = variable.op.name.replace(feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
    return variables_to_restore 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:24,代码来源:ssd_pnasnet_feature_extractor.py

示例15: restore_from_classification_checkpoint_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import global_variables [as 别名]
def restore_from_classification_checkpoint_fn(self, feature_extractor_scope):
    """Returns a map of variables to load from a foreign checkpoint.

    Args:
      feature_extractor_scope: A scope name for the feature extractor.

    Returns:
      A dict mapping variable names (to load from a checkpoint) to variables in
      the model graph.
    """
    variables_to_restore = {}
    for variable in tf.global_variables():
      var_name = variable.op.name
      if var_name.startswith(feature_extractor_scope + '/'):
        var_name = var_name.replace(feature_extractor_scope + '/', '')
        variables_to_restore[var_name] = variable

    return variables_to_restore 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:20,代码来源:ssd_meta_arch.py


注:本文中的tensorflow.global_variables方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。