本文整理汇总了Python中tensorflow.gfile.ListDirectory方法的典型用法代码示例。如果您正苦于以下问题:Python gfile.ListDirectory方法的具体用法?Python gfile.ListDirectory怎么用?Python gfile.ListDirectory使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.gfile
的用法示例。
在下文中一共展示了gfile.ListDirectory方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _load_data
# 需要导入模块: from tensorflow import gfile [as 别名]
# 或者: from tensorflow.gfile import ListDirectory [as 别名]
def _load_data(self):
dataset = np.zeros((24 * 4 * 183, 64, 64, 3))
all_files = [x for x in gfile.ListDirectory(CARS3D_PATH) if ".mat" in x]
for i, filename in enumerate(all_files):
data_mesh = _load_mesh(filename)
factor1 = np.array(list(range(4)))
factor2 = np.array(list(range(24)))
all_factors = np.transpose([
np.tile(factor1, len(factor2)),
np.repeat(factor2, len(factor1)),
np.tile(i,
len(factor1) * len(factor2))
])
indexes = self.index.features_to_index(all_factors)
dataset[indexes] = data_mesh
return dataset
示例2: aggregate_json_results
# 需要导入模块: from tensorflow import gfile [as 别名]
# 或者: from tensorflow.gfile import ListDirectory [as 别名]
def aggregate_json_results(base_path):
"""Aggregates all the result files in a directory into a namespaced dict.
Args:
base_path: String with the directory containing JSON files that only contain
dictionaries.
Returns:
Namespaced dictionary with the results.
"""
result = {}
compiled_pattern = re.compile(r"(.*)\.json")
for filename in gfile.ListDirectory(base_path):
match = compiled_pattern.match(filename)
if match:
path = os.path.join(base_path, filename)
with tf.gfile.GFile(path, "r") as f:
result[match.group(1)] = json.load(f)
return namespaced_dict(**result)
示例3: format_input
# 需要导入模块: from tensorflow import gfile [as 别名]
# 或者: from tensorflow.gfile import ListDirectory [as 别名]
def format_input(input_path, size):
"""Reads input path, randomly selects a sub-sample and concatenates them.
Args:
input_path: `str`, directory to read files from.
size: `int`, number of files to read.
Returns:
List of `str` containing independent text reviews.
"""
files = [path for path in gfile.ListDirectory(input_path)
if path.endswith(constants.FILE_EXTENSION)]
files = np.random.choice(files, size, replace=False)
files = [os.path.join(input_path, filename) for filename in files]
return get_prediction_input(files)
示例4: validate_holdout_selfplay
# 需要导入模块: from tensorflow import gfile [as 别名]
# 或者: from tensorflow.gfile import ListDirectory [as 别名]
def validate_holdout_selfplay():
"""Validate on held-out selfplay data."""
holdout_dirs = (os.path.join(fsdb.holdout_dir(), d)
for d in reversed(gfile.ListDirectory(fsdb.holdout_dir()))
if gfile.IsDirectory(os.path.join(fsdb.holdout_dir(), d))
for f in gfile.ListDirectory(os.path.join(fsdb.holdout_dir(), d)))
# This is a roundabout way of computing how many hourly directories we need
# to read in order to encompass 20,000 holdout games.
holdout_dirs = set(itertools.islice(holdout_dirs), 20000)
cmd = ['python3', 'validate.py'] + list(holdout_dirs) + [
'--use_tpu',
'--tpu_name={}'.format(TPU_NAME),
'--flagfile=rl_loop/distributed_flags',
'--expand_validation_dirs']
mask_flags.run(cmd)
示例5: load_config
# 需要导入模块: from tensorflow import gfile [as 别名]
# 或者: from tensorflow.gfile import ListDirectory [as 别名]
def load_config(config_path, config=None):
"""Loads configs from (possibly multiple) file(s).
A config file can be either a Python file (with suffix '.py')
or a YAML file. If the filename is not suffixed with '.py', the file is
parsed as YAML.
Args:
config_path: Paths to configuration files. This can be a `list` of
config file names, or a path to a directory in which all files
are loaded, or a string of multiple file names separated by commas.
config (dict, optional): A config dict to which new configurations are
added. If `None`, a new config dict is created.
Returns:
A `dict` of configurations.
"""
fnames = []
if isinstance(config_path, (list, tuple)):
fnames = list(config_path)
elif gfile.IsDirectory(config_path):
for fname in gfile.ListDirectory(config_path):
fname = os.path.join(config_path, fname)
if not gfile.IsDirectory(fname):
fnames.append(fname)
else:
for fname in config_path.split(","):
fname = fname.strip()
if not fname:
continue
fnames.append(fname)
if config is None:
config = {}
for fname in fnames:
config = load_config_single(fname, config)
return config
# pylint: disable=too-many-locals
示例6: test_capture
# 需要导入模块: from tensorflow import gfile [as 别名]
# 或者: from tensorflow.gfile import ListDirectory [as 别名]
def test_capture(self):
global_step = tf.contrib.framework.get_or_create_global_step()
# Some test computation
some_weights = tf.get_variable("weigths", [2, 128])
computation = tf.nn.softmax(some_weights)
hook = hooks.MetadataCaptureHook(
params={"step": 5}, model_dir=self.model_dir,
run_config=tf.contrib.learn.RunConfig())
hook.begin()
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
#pylint: disable=W0212
mon_sess = monitored_session._HookedSession(sess, [hook])
# Should not trigger for step 0
sess.run(tf.assign(global_step, 0))
mon_sess.run(computation)
self.assertEqual(gfile.ListDirectory(self.model_dir), [])
# Should trigger *after* step 5
sess.run(tf.assign(global_step, 5))
mon_sess.run(computation)
self.assertEqual(gfile.ListDirectory(self.model_dir), [])
mon_sess.run(computation)
self.assertEqual(
set(gfile.ListDirectory(self.model_dir)),
set(["run_meta", "tfprof_log", "timeline.json"]))
开发者ID:akanimax,项目名称:natural-language-summary-generation-from-structured-data,代码行数:29,代码来源:hooks_test.py
示例7: test_capture
# 需要导入模块: from tensorflow import gfile [as 别名]
# 或者: from tensorflow.gfile import ListDirectory [as 别名]
def test_capture(self):
global_step = tf.contrib.framework.get_or_create_global_step()
# Some test computation
some_weights = tf.get_variable("weigths", [2, 128])
computation = tf.nn.softmax(some_weights)
hook = hooks.MetadataCaptureHook(
params={"step": 5}, model_dir=self.model_dir)
hook.begin()
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
#pylint: disable=W0212
mon_sess = monitored_session._HookedSession(sess, [hook])
# Should not trigger for step 0
sess.run(tf.assign(global_step, 0))
mon_sess.run(computation)
self.assertEqual(gfile.ListDirectory(self.model_dir), [])
# Should trigger *after* step 5
sess.run(tf.assign(global_step, 5))
mon_sess.run(computation)
self.assertEqual(gfile.ListDirectory(self.model_dir), [])
mon_sess.run(computation)
self.assertEqual(
set(gfile.ListDirectory(self.model_dir)),
set(["run_meta", "tfprof_log", "timeline.json"]))
示例8: get_sgf_names
# 需要导入模块: from tensorflow import gfile [as 别名]
# 或者: from tensorflow.gfile import ListDirectory [as 别名]
def get_sgf_names(model):
game_dir = HOLDOUT_PATH.format(FLAGS.base_dir, model)
tf_records = map(os.path.basename, gfile.ListDirectory(game_dir))
sgfs = [record.replace('.tfrecord.zz', '.sgf') for record in tf_records]
return [PATH_TEMPLATE.format(FLAGS.base_dir, model, sgf) for sgf in sgfs]
示例9: get_hour_dirs
# 需要导入模块: from tensorflow import gfile [as 别名]
# 或者: from tensorflow.gfile import ListDirectory [as 别名]
def get_hour_dirs(root=None):
"""Gets the directories under selfplay_dir that match YYYY-MM-DD-HH."""
root = root or selfplay_dir()
return list(filter(lambda s: re.match(r"\d{4}-\d{2}-\d{2}-\d{2}", s),
gfile.ListDirectory(root)))
示例10: gather
# 需要导入模块: from tensorflow import gfile [as 别名]
# 或者: from tensorflow.gfile import ListDirectory [as 别名]
def gather(
input_directory: 'where to look for games'='data/selfplay/',
output_directory: 'where to put collected games'='data/training_chunks/',
examples_per_record: 'how many tf.examples to gather in each chunk'=EXAMPLES_PER_RECORD):
qmeas.start_time('gather')
_ensure_dir_exists(output_directory)
models = [model_dir.strip('/')
for model_dir in sorted(gfile.ListDirectory(input_directory))[-50:]]
with timer("Finding existing tfrecords..."):
model_gamedata = {
model: gfile.Glob(
os.path.join(input_directory, model, '*.tfrecord.zz'))
for model in models
}
print("Found %d models" % len(models))
for model_name, record_files in sorted(model_gamedata.items()):
print(" %s: %s files" % (model_name, len(record_files)))
meta_file = os.path.join(output_directory, 'meta.txt')
try:
with gfile.GFile(meta_file, 'r') as f:
already_processed = set(f.read().split())
except tf.errors.NotFoundError:
already_processed = set()
num_already_processed = len(already_processed)
for model_name, record_files in sorted(model_gamedata.items()):
if set(record_files) <= already_processed:
continue
print("Gathering files for %s:" % model_name)
for i, example_batch in enumerate(
tqdm(preprocessing.shuffle_tf_examples(examples_per_record, record_files))):
output_record = os.path.join(output_directory,
'{}-{}.tfrecord.zz'.format(model_name, str(i)))
preprocessing.write_tf_examples(
output_record, example_batch, serialize=False)
already_processed.update(record_files)
print("Processed %s new files" %
(len(already_processed) - num_already_processed))
with gfile.GFile(meta_file, 'w') as f:
f.write('\n'.join(sorted(already_processed)))
qmeas.stop_time('gather')
示例11: aggregate
# 需要导入模块: from tensorflow import gfile [as 别名]
# 或者: from tensorflow.gfile import ListDirectory [as 别名]
def aggregate():
logger.info("Gathering game results")
os.makedirs(PATHS.TRAINING_CHUNK_DIR, exist_ok=True)
os.makedirs(PATHS.SELFPLAY_DIR, exist_ok=True)
models = [model_dir.strip('/')
for model_dir in sorted(gfile.ListDirectory(PATHS.SELFPLAY_DIR))[-50:]]
with timer("Finding existing tfrecords..."):
model_gamedata = {
model: gfile.Glob(
os.path.join(PATHS.SELFPLAY_DIR, model, '*.zz'))
for model in models
}
logger.info("Found %d models" % len(models))
for model_name, record_files in sorted(model_gamedata.items()):
logger.info(" %s: %s files" % (model_name, len(record_files)))
meta_file = os.path.join(PATHS.TRAINING_CHUNK_DIR, 'meta.txt')
try:
with gfile.GFile(meta_file, 'r') as f:
already_processed = set(f.read().split())
except tf.errors.NotFoundError:
already_processed = set()
num_already_processed = len(already_processed)
for model_name, record_files in sorted(model_gamedata.items()):
if set(record_files) <= already_processed:
continue
logger.info("Gathering files for %s:" % model_name)
for i, example_batch in enumerate(
tqdm(preprocessing.shuffle_tf_examples(GLOBAL_PARAMETER_STORE.EXAMPLES_PER_RECORD, record_files))):
output_record = os.path.join(PATHS.TRAINING_CHUNK_DIR,
'{}-{}.tfrecord.zz'.format(model_name, str(i)))
preprocessing.write_tf_examples(
output_record, example_batch, serialize=False)
already_processed.update(record_files)
logger.info("Processed %s new files" %
(len(already_processed) - num_already_processed))
with gfile.GFile(meta_file, 'w') as f:
f.write('\n'.join(sorted(already_processed)))