当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.get_local_variable方法代码示例

本文整理汇总了Python中tensorflow.get_local_variable方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.get_local_variable方法的具体用法?Python tensorflow.get_local_variable怎么用?Python tensorflow.get_local_variable使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.get_local_variable方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import get_local_variable [as 别名]
def __init__(self, batch_env, step, is_training, should_log, config):
    self._batch_env = batch_env
    self._step = step  # Trainer step, not environment step.
    self._is_training = is_training
    self._should_log = should_log
    self._config = config
    self._cell = config.cell
    state = self._cell.zero_state(len(batch_env), tf.float32)
    var_like = lambda x: tf.get_local_variable(
        x.name.split(':')[0].replace('/', '_') + '_var',
        shape=x.shape,
        initializer=lambda *_, **__: tf.zeros_like(x), use_resource=True)
    self._state = nested.map(var_like, state)
    self._prev_action = tf.get_local_variable(
        'prev_action_var', shape=self._batch_env.action.shape,
        initializer=lambda *_, **__: tf.zeros_like(self._batch_env.action),
        use_resource=True) 
开发者ID:google-research,项目名称:planet,代码行数:19,代码来源:mpc_agent.py

示例2: value_op_with_initializer

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import get_local_variable [as 别名]
def value_op_with_initializer(value_op_fn, init_op_fn):
  """Make value_op that gets set by idempotent init_op on first invocation."""

  init_has_been_run = tf.get_local_variable(
      'has_been_run',
      initializer=np.zeros(shape=(), dtype=np.bool),
      dtype=tf.bool)

  value_op = value_op_fn()

  def run_init_and_toggle():
    init_op = init_op_fn(value_op)

    with tf.control_dependencies([init_op]):
      assign_op = init_has_been_run.assign(True)

    with tf.control_dependencies([assign_op]):
      return tf.identity(value_op)

  return tf.cond(init_has_been_run, lambda: value_op, run_init_and_toggle) 
开发者ID:brain-research,项目名称:deep-molecular-massspec,代码行数:22,代码来源:util.py

示例3: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import get_local_variable [as 别名]
def __init__(self, batch_env, step, is_training, should_log, config):
    self._step = step  # Trainer step, not environment step.
    self._is_training = is_training
    self._should_log = should_log
    self._config = config
    self._cell = config.cell
    self._num_envs = len(batch_env)
    state = self._cell.zero_state(self._num_envs, tf.float32)
    var_like = lambda x: tf.get_local_variable(
        x.name.split(':')[0].replace('/', '_') + '_var',
        shape=x.shape,
        initializer=lambda *_, **__: tf.zeros_like(x), use_resource=True)
    self._state = nested.map(var_like, state)
    batch_action_shape = (self._num_envs,) + batch_env.action_space.shape
    self._prev_action = tf.get_local_variable(
        'prev_action_var', shape=batch_action_shape,
        initializer=lambda *_, **__: tf.zeros(batch_action_shape),
        use_resource=True) 
开发者ID:google-research,项目名称:dreamer,代码行数:20,代码来源:mpc_agent.py

示例4: local_state_variables

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import get_local_variable [as 别名]
def local_state_variables(init_values, return_init_values):
  """Create local variables initialized from init_values.

  This will create local variables from a list of init_values. Each variable
  will be named based on the value's shape and dtype.

  As a convenience, a boolean tensor allows you to return value from
  the created local variable or from the original init value.

  Args:
    init_values: iterable of tensors
    return_init_values: boolean tensor

  Returns:
    local_vars: list of the created local variables.
    vals: if return_init_values is true, then this returns the values of
      init_values. Otherwise it returns the values of the local_vars.
  """
  if not init_values:
    return [], []

  # This generates a harmless warning when saving the metagraph.
  variable_use_count = tf.get_collection_ref(_LOCAL_STATE_VARIABLE_COLLECTION)
  if not variable_use_count:
    variable_use_count.append(collections.defaultdict(int))
  variable_use_count = variable_use_count[0]

  local_vars = []
  with tf.variable_scope(OPTIMIZER_SCOPE):
    # We can't use the init_value as an initializer as init_value may
    # itself depend on some problem variables. This would produce
    # inter-variable initialization order dependence which TensorFlow
    # sucks at making easy.
    for init_value in init_values:
      name = create_local_state_variable_name(init_value)
      unique_name = name + "_" + str(variable_use_count[name])
      variable_use_count[name] += 1
      # The overarching idea here is to be able to reuse variables between
      # different sessions on the same TensorFlow master without errors. By
      # uniquifying based on the type and name we mirror the checks made inside
      # TensorFlow, while still allowing some memory reuse. Ultimately this is a
      # hack due to the broken Session.reset().
      local_vars.append(
          tf.get_local_variable(
              unique_name,
              initializer=tf.zeros(
                  init_value.get_shape(), dtype=init_value.dtype)))

  # It makes things a lot simpler if we use the init_value the first
  # iteration, instead of the variable itself. It allows us to propagate
  # gradients through it as well as simplifying initialization. The variable
  # ends up assigned to after the first iteration.
  vals = tf.cond(return_init_values, lambda: init_values, lambda: local_vars)
  if len(init_values) == 1:
    # tf.cond extracts elements from singleton lists.
    vals = [vals]
  return local_vars, vals 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:59,代码来源:trainable_optimizer.py


注:本文中的tensorflow.get_local_variable方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。