本文整理汇总了Python中tensorflow.expm1方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.expm1方法的具体用法?Python tensorflow.expm1怎么用?Python tensorflow.expm1使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.expm1方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: bottleneck
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import expm1 [as 别名]
def bottleneck(self, x):
hparams = self.hparams
z_size = hparams.bottleneck_bits
x_shape = common_layers.shape_list(x)
with tf.variable_scope("vae"):
mu = tf.layers.dense(x, z_size, name="mu")
if hparams.mode != tf.estimator.ModeKeys.TRAIN:
return mu, 0.0 # No sampling or kl loss on eval.
log_sigma = tf.layers.dense(x, z_size, name="log_sigma")
epsilon = tf.random_normal(x_shape[:-1] + [z_size])
z = mu + tf.exp(log_sigma / 2) * epsilon
kl = 0.5 * tf.reduce_mean(
tf.expm1(log_sigma) + tf.square(mu) - log_sigma, axis=-1)
free_bits = z_size // 4
kl_loss = tf.reduce_mean(tf.maximum(kl - free_bits, 0.0))
return z, kl_loss * hparams.kl_beta
示例2: vae
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import expm1 [as 别名]
def vae(x, z_size, name=None):
"""Simple variational autoencoder without discretization.
Args:
x: Input to the discretization bottleneck.
z_size: Number of bits, where discrete codes range from 1 to 2**z_size.
name: Name for the bottleneck scope.
Returns:
Embedding function, latent, loss, mu and log_simga.
"""
with tf.variable_scope(name, default_name="vae"):
mu = tf.layers.dense(x, z_size, name="mu")
log_sigma = tf.layers.dense(x, z_size, name="log_sigma")
shape = common_layers.shape_list(x)
epsilon = tf.random_normal([shape[0], shape[1], 1, z_size])
z = mu + tf.exp(log_sigma / 2) * epsilon
kl = 0.5 * tf.reduce_mean(
tf.expm1(log_sigma) + tf.square(mu) - log_sigma, axis=-1)
free_bits = z_size // 4
kl_loss = tf.reduce_mean(tf.maximum(kl - free_bits, 0.0))
return z, kl_loss, mu, log_sigma
示例3: denorm
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import expm1 [as 别名]
def denorm(logmagnitude):
return tf.expm1(logmagnitude)
示例4: denorm
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import expm1 [as 别名]
def denorm(logmagnitude):
'''
Exp(logmagnitude) - 1
:param logmagnitude: Log-normalized magnitude spectrogram
:return: Unnormalized magnitude spectrogram
'''
return tf.expm1(logmagnitude)
示例5: signed_expm1
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import expm1 [as 别名]
def signed_expm1(inputs):
return tf.multiply(tf.sign(inputs), tf.expm1(tf.abs(inputs)))
示例6: sonify
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import expm1 [as 别名]
def sonify(spectrogram, samples, transform_op_fn, logscaled=True):
graph = tf.Graph()
with graph.as_default():
noise = tf.Variable(tf.random_normal([samples], stddev=1e-6))
x = transform_op_fn(noise)
y = spectrogram
if logscaled:
x = tf.expm1(x)
y = tf.expm1(y)
x = tf.nn.l2_normalize(x)
y = tf.nn.l2_normalize(y)
tf.losses.mean_squared_error(x, y[-tf.shape(x)[0]:])
optimizer = tf.contrib.opt.ScipyOptimizerInterface(
loss=tf.losses.get_total_loss(),
var_list=[noise],
tol=1e-16,
method='L-BFGS-B',
options={
'maxiter': 1000,
'disp': True
})
with tf.Session(graph=graph) as session:
session.run(tf.global_variables_initializer())
optimizer.minimize(session)
waveform = session.run(noise)
return waveform
示例7: sonify
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import expm1 [as 别名]
def sonify(spectrogram, samples, transform_op_fn, logscaled=True):
graph = tf.Graph()
with graph.as_default():
noise = tf.Variable(tf.random_normal([samples], stddev=1e-6))
x = transform_op_fn(noise)
y = spectrogram
if logscaled:
x = tf.expm1(x)
y = tf.expm1(y)
# tf.nn.normalize arguments changed between versions...
def normalize(a):
return a / tf.sqrt(tf.maximum(tf.reduce_sum(a ** 2, axis=0), 1E-12))
x = normalize(x)
y = normalize(y)
tf.losses.mean_squared_error(x, y[-tf.shape(x)[0]:])
optimizer = tf.contrib.opt.ScipyOptimizerInterface(
loss=tf.losses.get_total_loss(),
var_list=[noise],
tol=1e-16,
method='L-BFGS-B',
options={
'maxiter': sonify_steps,
'disp': True
})
# THIS REALLY SHOULDN'T RUN ON GPU BUT SEEMS TO?
config = tf.ConfigProto(
device_count={'CPU' : 1, 'GPU' : 0},
allow_soft_placement=True,
log_device_placement=False
)
with tf.Session(config=config, graph=graph) as session:
session.run(tf.global_variables_initializer())
optimizer.minimize(session)
waveform = session.run(noise)
return waveform