本文整理汇总了Python中tensorflow.examples.tutorials.mnist.mnist.inference方法的典型用法代码示例。如果您正苦于以下问题:Python mnist.inference方法的具体用法?Python mnist.inference怎么用?Python mnist.inference使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.examples.tutorials.mnist.mnist
的用法示例。
在下文中一共展示了mnist.inference方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from tensorflow.examples.tutorials.mnist import mnist [as 别名]
# 或者: from tensorflow.examples.tutorials.mnist.mnist import inference [as 别名]
def main(unused_argv):
if FLAGS.log_dir is None or FLAGS.log_dir == "":
raise ValueError("Must specify an explicit `log_dir`")
if FLAGS.data_dir is None or FLAGS.data_dir == "":
raise ValueError("Must specify an explicit `data_dir`")
device, target = device_and_target()
with tf.device(device):
images = tf.placeholder(tf.float32, [None, 784], name='image_input')
labels = tf.placeholder(tf.float32, [None], name='label_input')
data = read_data_sets(FLAGS.data_dir,
one_hot=False,
fake_data=False)
logits = mnist.inference(images, FLAGS.hidden1, FLAGS.hidden2)
loss = mnist.loss(logits, labels)
loss = tf.Print(loss, [loss], message="Loss = ")
train_op = mnist.training(loss, FLAGS.learning_rate)
with tf.train.MonitoredTrainingSession(
master=target,
is_chief=(FLAGS.task_index == 0),
checkpoint_dir=FLAGS.log_dir) as sess:
while not sess.should_stop():
xs, ys = data.train.next_batch(FLAGS.batch_size, fake_data=False)
sess.run(train_op, feed_dict={images:xs, labels:ys})