本文整理汇总了Python中tensorflow.example方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.example方法的具体用法?Python tensorflow.example怎么用?Python tensorflow.example使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.example方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: read_vocab_file
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def read_vocab_file(file_path):
"""Reads a vocab file to memeory.
Args:
file_path: Each line of the vocab is in the form "token,example_count"
Returns:
Two lists, one for the vocab, and one for just the example counts.
"""
with file_io.FileIO(file_path, 'r') as f:
vocab_pd = pd.read_csv(
f,
header=None,
names=['vocab', 'count'],
dtype=str, # Prevent pd from converting numerical categories.
na_filter=False) # Prevent pd from converting 'NA' to a NaN.
vocab = vocab_pd['vocab'].tolist()
ex_count = vocab_pd['count'].astype(int).tolist()
return vocab, ex_count
示例2: _run_training_transform
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def _run_training_transform(self, problem_type, model_type, extra_args=[]):
"""Runs training starting with transformed tf.example files.
Args:
problem_type: 'regression' or 'classification'
model_type: 'linear' or 'dnn'
extra_args: list of strings to pass to the trainer.
"""
cmd = ['cd %s && ' % CODE_PATH,
'python -m trainer.task',
'--train=' + os.path.join(self._transform_output, 'features_train*'),
'--eval=' + os.path.join(self._transform_output, 'features_eval*'),
'--job-dir=' + self._train_output,
'--analysis=' + self._analysis_output,
'--model=%s_%s' % (model_type, problem_type),
'--train-batch-size=100',
'--eval-batch-size=50',
'--max-steps=' + str(self._max_steps)] + extra_args
self._logger.debug('Running subprocess: %s \n\n' % ' '.join(cmd))
subprocess.check_call(' '.join(cmd), shell=True)
示例3: serialize_example
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def serialize_example(transformed_json_data, info_dict):
"""Makes a serialized tf.example.
Args:
transformed_json_data: dict of transformed data.
info_dict: output of feature_transforms.get_transfrormed_feature_info()
Returns:
The serialized tf.example version of transformed_json_data.
"""
import six
import tensorflow as tf
def _make_int64_list(x):
return tf.train.Feature(int64_list=tf.train.Int64List(value=x))
def _make_bytes_list(x):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=x))
def _make_float_list(x):
return tf.train.Feature(float_list=tf.train.FloatList(value=x))
if sorted(six.iterkeys(transformed_json_data)) != sorted(six.iterkeys(info_dict)):
raise ValueError('Keys do not match %s, %s' % (list(six.iterkeys(transformed_json_data)),
list(six.iterkeys(info_dict))))
ex_dict = {}
for name, info in six.iteritems(info_dict):
if info['dtype'] == tf.int64:
ex_dict[name] = _make_int64_list(transformed_json_data[name])
elif info['dtype'] == tf.float32:
ex_dict[name] = _make_float_list(transformed_json_data[name])
elif info['dtype'] == tf.string:
ex_dict[name] = _make_bytes_list(transformed_json_data[name])
else:
raise ValueError('Unsupported data type %s' % info['dtype'])
ex = tf.train.Example(features=tf.train.Features(feature=ex_dict))
return ex.SerializeToString()
示例4: _check_tensorflow
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def _check_tensorflow():
if tf is None:
raise ImportError(
'Failed to import `tensorflow`. '
'Please install `tensorflow`. '
'For example with `pip install tensorflow`.')
示例5: _create_intent_dict
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def _create_intent_dict(training_data):
"""Create intent dictionary"""
distinct_intents = set([example.get("intent")
for example in training_data.intent_examples])
return {intent: idx
for idx, intent in enumerate(sorted(distinct_intents))}
示例6: persist
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def persist(self, file_name: Text, model_dir: Text):
# type: (Text) -> Dict[Text, Any]
"""Persist this model into the passed directory.
Return the metadata necessary to load the model again."""
if self.estimator is None:
return {"classifier_file": None}
# build feature spec for tf.example parsing
feature_spec = tf.feature_column.make_parse_example_spec(self.feature_columns)
# build tf.example parser
serving_input_receiver_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)
# export tf model
path = self.estimator.export_savedmodel(model_dir, serving_input_receiver_fn)
# decode model path to string
file_dir = os.path.basename(path).decode('utf-8')
with io.open(os.path.join(
model_dir,
file_name + "_inv_intent_dict.pkl"), 'wb') as f:
pickle.dump(self.inv_intent_dict, f)
with io.open(os.path.join(
model_dir,
file_name + "_encoded_all_intents.pkl"), 'wb') as f:
pickle.dump(self.encoded_all_intents, f)
return {"file": file_name}
示例7: add_word_and_label_id
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def add_word_and_label_id(self, word, label_id):
"""Adds word and label_id pair in the example."""
self.words.append(word)
self.label_ids.append(label_id)
示例8: _read_one_file
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def _read_one_file(file_name, label_list):
"""Reads one file and returns a list of `InputExample` instances."""
lines = tf.io.gfile.GFile(file_name, "r").readlines()
examples = []
label_id_map = {label: i for i, label in enumerate(label_list)}
sentence_id = 0
example = InputExample(sentence_id=0)
for line in lines:
line = line.strip("\n")
if line:
# The format is: <token>\t<label> for train/dev set and <token> for test.
items = line.split("\t")
assert len(items) == 2 or len(items) == 1
token = items[0].strip()
# Assign a dummy label_id for test set
label_id = label_id_map[items[1].strip()] if len(items) == 2 else 0
example.add_word_and_label_id(token, label_id)
else:
# Empty line indicates a new sentence.
if example.words:
examples.append(example)
sentence_id += 1
example = InputExample(sentence_id=sentence_id)
if example.words:
examples.append(example)
return examples
示例9: _tokenize_example
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def _tokenize_example(example, max_length, tokenizer, text_preprocessing=None):
"""Tokenizes words and breaks long example into short ones."""
# Needs additional [CLS] and [SEP] tokens.
max_length = max_length - 2
new_examples = []
new_example = InputExample(sentence_id=example.sentence_id)
for i, word in enumerate(example.words):
if any([x < 0 for x in example.label_ids]):
raise ValueError("Unexpected negative label_id: %s" % example.label_ids)
if text_preprocessing:
word = text_preprocessing(word)
subwords = tokenizer.tokenize(word)
if (not subwords or len(subwords) > max_length) and word:
subwords = [_UNK_TOKEN]
if len(subwords) + len(new_example.words) > max_length:
# Start a new example.
new_examples.append(new_example)
new_example = InputExample(sentence_id=example.sentence_id)
for j, subword in enumerate(subwords):
# Use the real label for the first subword, and pad label for
# the remainings.
subword_label = example.label_ids[i] if j == 0 else _PADDING_LABEL_ID
new_example.add_word_and_label_id(subword, subword_label)
if new_example.words:
new_examples.append(new_example)
return new_examples
示例10: _convert_single_example
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def _convert_single_example(example, max_seq_length, tokenizer):
"""Converts an `InputExample` instance to a `tf.train.Example` instance."""
tokens = ["[CLS]"]
tokens.extend(example.words)
tokens.append("[SEP]")
input_ids = tokenizer.convert_tokens_to_ids(tokens)
label_ids = [_PADDING_LABEL_ID]
label_ids.extend(example.label_ids)
label_ids.append(_PADDING_LABEL_ID)
segment_ids = [0] * len(input_ids)
input_mask = [1] * len(input_ids)
# Pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
label_ids.append(_PADDING_LABEL_ID)
def create_int_feature(values):
return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(input_ids)
features["input_mask"] = create_int_feature(input_mask)
features["segment_ids"] = create_int_feature(segment_ids)
features["label_ids"] = create_int_feature(label_ids)
features["sentence_id"] = create_int_feature([example.sentence_id])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
return tf_example
示例11: process
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def process(self, message, **kwargs):
# type: (Message, **Any) -> None
"""Return the most likely intent and its similarity to the input."""
intent = {"name": None, "confidence": 0.0}
intent_ranking = []
if self.predictor is None:
logger.error("There is no trained tf.session: "
"component is either not trained or "
"didn't receive enough training data")
else:
X = message.get("text_features").tolist()
examples = []
feature = {}
# convert input x to tf.feature with float feature spec
feature['a_in'] = tf.train.Feature(float_list=tf.train.FloatList(value=X))
# build tf.example for prediction
example = tf.train.Example(
features=tf.train.Features(
feature=feature
)
)
# serialize tf.example to string
examples.append(example.SerializeToString())
# Make predictions.
result_dict = self.predictor({'inputs': examples})
result_score_list = result_dict['scores'][0]
max_score = np.max(result_dict['scores'][0])
max_index = np.argmax(result_dict['scores'][0])
# if X contains all zeros do not predict some label
if len(X)>0:
intent = {
"name": self.inv_intent_dict[max_index], "confidence": float(max_score)
}
ranking = result_score_list[:INTENT_RANKING_LENGTH]
intent_ranking = [{"name": self.inv_intent_dict[intent_idx],
"confidence": float(score)}
for intent_idx, score in enumerate(ranking)]
intent_ranking = sorted(intent_ranking, key=lambda s: s['confidence'], reverse=True)
message.set("intent", intent, add_to_output=True)
message.set("intent_ranking", intent_ranking, add_to_output=True)
示例12: dict_to_tfexample
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def dict_to_tfexample(mol_dict):
"""Convert dictionary of molecular info to tfExample.
Args:
mol_dict : dictionary containing molecule info.
Returns:
example : tf.example containing mol_dict info.
"""
example = tf.train.Example()
feature_map = example.features.feature
feature_map[fmap_constants.ATOM_WEIGHTS].float_list.value.extend(
mol_dict[fmap_constants.ATOM_WEIGHTS])
feature_map[fmap_constants.ATOM_IDS].int64_list.value.extend(
mol_dict[fmap_constants.ATOM_IDS])
feature_map[fmap_constants.ADJACENCY_MATRIX].int64_list.value.extend(
mol_dict[fmap_constants.ADJACENCY_MATRIX])
feature_map[fmap_constants.MOLECULE_WEIGHT].float_list.value.append(
mol_dict[fmap_constants.MOLECULE_WEIGHT])
feature_map[fmap_constants.DENSE_MASS_SPEC].float_list.value.extend(
mol_dict[fmap_constants.DENSE_MASS_SPEC])
feature_map[fmap_constants.INCHIKEY].bytes_list.value.append(
mol_dict[fmap_constants.INCHIKEY].encode('utf-8'))
feature_map[fmap_constants.MOLECULAR_FORMULA].bytes_list.value.append(
mol_dict[fmap_constants.MOLECULAR_FORMULA].encode('utf-8'))
feature_map[fmap_constants.NAME].bytes_list.value.append(
mol_dict[fmap_constants.NAME].encode('utf-8'))
feature_map[fmap_constants.SMILES].bytes_list.value.append(
mol_dict[fmap_constants.SMILES].encode('utf-8'))
if fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY in mol_dict:
feature_map[
fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY].int64_list.value.append(
mol_dict[fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY])
for fp_len in ms_constants.NUM_CIRCULAR_FP_BITS_LIST:
for rad in ms_constants.CIRCULAR_FP_RADII_LIST:
for fp_type in fmap_constants.FP_TYPE_LIST:
fp_key = ms_constants.CircularFingerprintKey(fp_type, fp_len, rad)
feature_map[str(fp_key)].float_list.value.extend(mol_dict[fp_key])
return example
示例13: write_dicts_to_example
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def write_dicts_to_example(mol_list,
record_path_name,
max_atoms,
max_mass_spec_peak_loc,
true_library_array_path_name=None):
"""Helper function for writing tf.record from all examples.
Uses dict_to_tfexample to write the actual tf.example
Args:
mol_list : list of rdkit.Mol objects
record_path_name : file name for storing tf record
max_atoms : max. number of atoms to consider in a molecule.
max_mass_spec_peak_loc : largest mass/charge ratio to allow in a spectra
true_library_array_path_name: path for storing np.array of true spectra
Returns:
- Writes tf.Record of an example for each eligible molecule
(i.e. # atoms < max_atoms)
- Writes np.array (len(mol_list), max_mass_spec_peak_loc) to
true_library_array_path_name if it is defined.
"""
options = tf.python_io.TFRecordOptions(
tf.python_io.TFRecordCompressionType.ZLIB)
# Wrapper function to add index value to dictionary
if true_library_array_path_name:
spectra_matrix = np.zeros((len(mol_list), max_mass_spec_peak_loc))
def make_mol_dict_with_saved_array(idx, mol):
mol_dict = make_mol_dict(mol, max_atoms, max_mass_spec_peak_loc)
mol_dict[fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY] = idx
spectra_matrix[idx, :] = mol_dict[fmap_constants.DENSE_MASS_SPEC]
return mol_dict
make_mol_dict_fn = make_mol_dict_with_saved_array
else:
def make_mol_dict_without_saved_array(idx, mol):
del idx
return make_mol_dict(mol, max_atoms, max_mass_spec_peak_loc)
make_mol_dict_fn = make_mol_dict_without_saved_array
with tf.python_io.TFRecordWriter(record_path_name, options) as writer:
for idx, mol in enumerate(mol_list):
mol_dict = make_mol_dict_fn(idx, mol)
example = dict_to_tfexample(mol_dict)
writer.write(example.SerializeToString())
if true_library_array_path_name:
with tf.gfile.Open(true_library_array_path_name, 'w') as f:
np.save(f, spectra_matrix)
示例14: __new__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def __new__(cls, label_keys: List[Text], prediction_keys: List[Text],
feature_spec: Dict[Text, Any]):
"""Creates a ModelAgnosticConfig instance.
Creates a config spec for doing ModelAgnostic evaluation (Model evaluation
without the training eval saved model). This spec defines the basic
parameters with which to define Features, Predictions, and Labels from
input Examples.
Args:
label_keys: A list of Text, the keys in the input examples which should be
treated as labels. Currently, this cannot be empty.
prediction_keys: A list of Text, the keys in the input examples which
should be treated as predictions. Currently, this cannot be empty.
feature_spec: In the case only FPL is provided (via Examples), a dict
defining how to parse the example. This should be of the form "key" ->
FixedLenFeature or VarLenFeature. This is required to parse input
examples.
Returns:
A ModelAgnosticConfig instance.
Raises:
ValueError: This inputs supplied are properly defined..
"""
if not label_keys:
raise ValueError('ModelAgnosticConfig must have label keys set.')
if not prediction_keys:
raise ValueError('ModelAgnosticConfig must have prediction keys set.')
if not feature_spec:
raise ValueError('ModelAgnosticConfig must have feature_spec set.')
for key in prediction_keys:
if key not in feature_spec:
raise ValueError('Prediction key %s not defined in feature_spec.' % key)
for key in label_keys:
if key not in feature_spec:
raise ValueError('Label key %s not defined in feature_spec.' % key)
return super(ModelAgnosticConfig, cls).__new__(
cls,
label_keys=label_keys,
prediction_keys=prediction_keys,
feature_spec=feature_spec)
示例15: get_fpls_from_examples
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import example [as 别名]
def get_fpls_from_examples(self, input_example_bytes_list: List[bytes]
) -> List[Any]:
"""Generates FPLs from serialized examples using a ModelAgnostic graph.
Args:
input_example_bytes_list: A string representing the serialized tf.example
protos to be parsed by the graph.
Returns:
A list of FeaturesPredictionsLabels generated from the input examples.
"""
# Call the graph via the created session callable _get_features_fn and
# get the tensor representation of the features.
features = self._get_features_fn(input_example_bytes_list)
split_features = {}
num_examples = 0
# Split the features by the example keys. Also verify all each example
# key has the same number of total examples.
for key in features.keys():
split_features[key] = util.split_tensor_value(features[key])
if num_examples == 0:
num_examples = len(split_features[key])
elif num_examples != len(split_features[key]):
raise ValueError(
'Different keys unexpectedly had different number of '
'examples. Key %s unexpectedly had %s elements.' % key,
len(split_features[key]))
# Sort out the examples into individual FPLs: one example -> one FPL.
# Sort them into Features, Predictions, or Labels according to the input
# config.
result = []
for i in range(num_examples):
labels = {}
predictions = {}
features = {}
for key in split_features:
if key in self._config.label_keys:
labels[key] = {encoding.NODE_SUFFIX: split_features[key][i]}
if key in self._config.prediction_keys:
predictions[key] = {encoding.NODE_SUFFIX: split_features[key][i]}
features[key] = {encoding.NODE_SUFFIX: split_features[key][i]}
result.append(
types.FeaturesPredictionsLabels(
input_ref=i,
features=features,
predictions=predictions,
labels=labels))
return result