本文整理汇总了Python中tensorflow.einsum方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.einsum方法的具体用法?Python tensorflow.einsum怎么用?Python tensorflow.einsum使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.einsum方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_bnn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def build_bnn(x, layer_sizes, n_particles):
bn = zs.BayesianNet()
h = tf.tile(x[None, ...], [n_particles, 1, 1])
for i, (n_in, n_out) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
w = bn.normal("w" + str(i), tf.zeros([n_out, n_in + 1]), std=1.,
group_ndims=2, n_samples=n_particles)
h = tf.concat([h, tf.ones(tf.shape(h)[:-1])[..., None]], -1)
h = tf.einsum("imk,ijk->ijm", w, h) / tf.sqrt(
tf.cast(tf.shape(h)[2], tf.float32))
if i < len(layer_sizes) - 2:
h = tf.nn.relu(h)
y_mean = bn.deterministic("y_mean", tf.squeeze(h, 2))
y_logstd = tf.get_variable("y_logstd", shape=[],
initializer=tf.constant_initializer(0.))
bn.normal("y", y_mean, logstd=y_logstd)
return bn
示例2: build_bnn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def build_bnn(x, layer_sizes, logstds, n_particles):
bn = zs.BayesianNet()
h = tf.tile(x[None, ...], [n_particles, 1, 1])
for i, (n_in, n_out) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
w = bn.normal("w" + str(i), tf.zeros([n_out, n_in + 1]),
logstd=logstds[i], group_ndims=2, n_samples=n_particles)
h = tf.concat([h, tf.ones(tf.shape(h)[:-1])[..., None]], -1)
h = tf.einsum("imk,ijk->ijm", w, h) / tf.sqrt(
tf.cast(tf.shape(h)[2], tf.float32))
if i < len(layer_sizes) - 2:
h = tf.nn.relu(h)
y_mean = bn.deterministic("y_mean", tf.squeeze(h, 2))
y_logstd = -0.95
bn.normal("y", y_mean, logstd=y_logstd)
return bn
示例3: _call
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def _call(self, inputs):
x = inputs # N, S, VF
# dropout
x = tf.nn.dropout(x, 1 - self.dropout)
# convolve
supports = list()
for i in range(len(self.support)):
pre_sup = tf.einsum('ijk,kl->ijl', x, self.vars['weights_' + str(i)])
support = tf.einsum('ij,kjl->kil', self.support[i], pre_sup)
supports.append(support)
output = tf.add_n(supports)
# bias
if self.bias:
output += self.vars['bias']
return self.act(output)
示例4: mixed_mode_dot
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def mixed_mode_dot(a, b):
"""
Computes the equivalent of `tf.einsum('ij,bjk->bik', a, b)`, but
works for both dense and sparse inputs.
:param a: Tensor or SparseTensor with rank 2.
:param b: Tensor or SparseTensor with rank 3.
:return: Tensor or SparseTensor with rank 3.
"""
s_0_, s_1_, s_2_ = K.int_shape(b)
B_T = ops.transpose(b, (1, 2, 0))
B_T = ops.reshape(B_T, (s_1_, -1))
output = dot(a, B_T)
output = ops.reshape(output, (s_1_, s_2_, -1))
output = ops.transpose(output, (2, 0, 1))
return output
示例5: _call_dense
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def _call_dense(self, X, A):
shape = tf.shape(A)[:-1]
A = tf.linalg.set_diag(A, tf.zeros(shape, A.dtype))
A = tf.linalg.set_diag(A, tf.ones(shape, A.dtype))
X = tf.einsum("...NI , IHO -> ...NHO", X, self.kernel)
attn_for_self = tf.einsum("...NHI , IHO -> ...NHO", X, self.attn_kernel_self)
attn_for_neighs = tf.einsum("...NHI , IHO -> ...NHO", X, self.attn_kernel_neighs)
attn_for_neighs = tf.einsum("...ABC -> ...CBA", attn_for_neighs)
attn_coef = attn_for_self + attn_for_neighs
attn_coef = tf.nn.leaky_relu(attn_coef, alpha=0.2)
mask = -10e9 * (1.0 - A)
attn_coef += mask[..., None, :]
attn_coef = tf.nn.softmax(attn_coef, axis=-1)
attn_coef_drop = self.dropout(attn_coef)
output = tf.einsum("...NHM , ...MHI -> ...NHI", attn_coef_drop, X)
return output, attn_coef
示例6: post_attention
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def post_attention(h, attn_vec, d_model, n_head, d_head, dropout, is_training,
kernel_initializer, residual=True):
"""Post-attention processing."""
# post-attention projection (back to `d_model`)
proj_o = tf.get_variable('o/kernel', [d_model, n_head, d_head],
dtype=h.dtype, initializer=kernel_initializer)
attn_out = tf.einsum('ibnd,hnd->ibh', attn_vec, proj_o)
attn_out = tf.layers.dropout(attn_out, dropout, training=is_training)
if residual:
output = tf.contrib.layers.layer_norm(attn_out + h, begin_norm_axis=-1,
scope='LayerNorm')
else:
output = tf.contrib.layers.layer_norm(attn_out, begin_norm_axis=-1,
scope='LayerNorm')
return output
示例7: bert_layer_aggerate
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def bert_layer_aggerate(encoding_lst, max_len, scope, reuse):
with tf.variable_scope(scope, reuse=reuse):
valid_tensor = tf.stack(encoding_lst, axis=1) # batch x num_layer x seq x dim
attn = tf.get_variable(scope+"/layer_attention",
dtype=tf.float32,
shape=[len(encoding_lst),],
initializer=tf.initializers.random_uniform(0,1))
prob = tf.exp(tf.nn.log_softmax(attn))
layer_repres = tf.einsum("abcd,b->acd", valid_tensor, prob)
# layer_repres = encoding_lst[-1]
# since input_target_a means b->a
# and input_target_b means a->b
layer_repres = layer_repres[:,0:max_len,:]
# print(" bert layer output shape w{}".format(layer_repres.get_shape()))
return layer_repres
示例8: bert_layer_aggerate
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def bert_layer_aggerate(encoding_lst,
scope, reuse):
with tf.variable_scope(scope, reuse=reuse):
valid_tensor = tf.stack(encoding_lst, axis=1) # batch x num_layer x seq x dim
attn = tf.get_variable(scope+"/layer_attention",
dtype=tf.float32,
shape=[len(encoding_lst),],
initializer=tf.initializers.random_uniform(-0.01,0.01))
prob = tf.exp(tf.nn.log_softmax(attn))
layer_repres = tf.einsum("abcd,b->acd", valid_tensor, prob)
# since input_target_a means b->a
# and input_target_b means a->b
# print(" bert layer output shape w{}".format(layer_repres.get_shape()))
return layer_repres
示例9: call
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def call(self, inputs):
if self.coeffs_mean is None and self.coeffs_precision_tril_op is None:
# p(mean(ynew) | xnew) = Normal(ynew | mean = 0, variance = xnew xnew^T)
predictive_mean = 0.
predictive_variance = tf.reduce_sum(tf.square(inputs), -1)
else:
# p(mean(ynew) | xnew, x, y) = Normal(ynew |
# mean = xnew (1/noise_variance) (1/noise_variance x^T x + I)^{-1}x^T y,
# variance = xnew (1/noise_variance x^T x + I)^{-1} xnew^T)
predictive_mean = tf.einsum('nm,m->n', inputs, self.coeffs_mean)
predictive_covariance = tf.matmul(
inputs,
self.coeffs_precision_tril_op.solve(
self.coeffs_precision_tril_op.solve(inputs, adjoint_arg=True),
adjoint=True))
predictive_variance = tf.diag_part(predictive_covariance)
return ed.Normal(loc=predictive_mean, scale=tf.sqrt(predictive_variance))
示例10: fit
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def fit(self, x=None, y=None):
# p(coeffs | x, y) = Normal(coeffs |
# mean = (1/noise_variance) (1/noise_variance x^T x + I)^{-1} x^T y,
# covariance = (1/noise_variance x^T x + I)^{-1})
# TODO(trandustin): We newly fit the data at each call. Extend to do
# Bayesian updating.
kernel_matrix = tf.matmul(x, x, transpose_a=True) / self.noise_variance
coeffs_precision = tf.matrix_set_diag(
kernel_matrix, tf.matrix_diag_part(kernel_matrix) + 1.)
coeffs_precision_tril = tf.linalg.cholesky(coeffs_precision)
self.coeffs_precision_tril_op = tf.linalg.LinearOperatorLowerTriangular(
coeffs_precision_tril)
self.coeffs_mean = self.coeffs_precision_tril_op.solvevec(
self.coeffs_precision_tril_op.solvevec(tf.einsum('nm,n->m', x, y)),
adjoint=True) / self.noise_variance
# TODO(trandustin): To be fully Keras-compatible, return History object.
return
示例11: laplace_attention
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def laplace_attention(q, k, v, scale, normalise):
"""Computes laplace exponential attention.
Args:
q: queries. Tensor of shape [batch_size, m, d_k].
k: keys. Tensor of shape [batch_size, n, d_k].
v: values. Tensor of shape [batch_size, n, d_v].
scale: float that scales the L1 distance.
normalise: Boolean that determines whether weights sum to 1.
Returns:
Tensor of shape [batch_size, m, d_v].
"""
k = tf.expand_dims(k, axis=1) # [batch_size, 1, n, d_k]
q = tf.expand_dims(q, axis=2) # [batch_size, m, 1, d_k]
unnorm_weights = - tf.abs((k - q) / scale) # [batch_size, m, n, d_k]
unnorm_weights = tf.reduce_sum(unnorm_weights, axis=-1) # [batch_size, m, n]
if normalise:
weight_fn = tf.nn.softmax
else:
weight_fn = lambda x: 1 + tf.tanh(x)
weights = weight_fn(unnorm_weights) # [batch_size, m, n]
rep = tf.einsum('bik,bkj->bij', weights, v) # [batch_size, m, d_v]
return rep
示例12: calculate_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def calculate_loss(self, predictions, labels, weights=None, **unused_params):
with tf.name_scope("loss_xent"):
epsilon = 10e-6
if FLAGS.label_smoothing:
float_labels = smoothing(labels)
else:
float_labels = tf.cast(labels, tf.float32)
cross_entropy_loss = float_labels * tf.log(predictions + epsilon) + (
1 - float_labels) * tf.log(1 - predictions + epsilon)
cross_entropy_loss = tf.negative(cross_entropy_loss)
if weights is not None:
print cross_entropy_loss, weights
weighted_loss = tf.einsum("ij,i->ij", cross_entropy_loss, weights)
print "create weighted_loss", weighted_loss
return tf.reduce_mean(tf.reduce_sum(weighted_loss, 1))
else:
return tf.reduce_mean(tf.reduce_sum(cross_entropy_loss, 1))
示例13: create_model
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def create_model(self, model_input, vocab_size, l2_penalty=1e-8, original_input=None, **unused_params):
"""Creates a linear regression model.
Args:
model_input: 'batch' x 'num_features' x 'num_methods' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
num_methods = model_input.get_shape().as_list()[-1]
weight = tf.get_variable("ensemble_weight",
shape=[num_methods],
regularizer=slim.l2_regularizer(l2_penalty))
weight = tf.nn.softmax(weight)
output = tf.einsum("ijk,k->ij", model_input, weight)
return {"predictions": output}
示例14: create_model
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def create_model(self,
model_input,
vocab_size,
num_mixtures=None,
l2_penalty=1e-8,
sub_scope="",
original_input=None,
**unused_params):
num_methods = model_input.get_shape().as_list()[-1]
num_features = model_input.get_shape().as_list()[-2]
original_input = tf.nn.l2_normalize(original_input, dim=1)
gate_activations = slim.fully_connected(
original_input,
num_methods,
activation_fn=tf.nn.softmax,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope="gates"+sub_scope)
output = tf.einsum("ijk,ik->ij", model_input, gate_activations)
return {"predictions": output}
示例15: lstm
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import einsum [as 别名]
def lstm(self, prev_y, prev_h, prev_c, z):
hs = self.hidden_size
preact = tf.einsum('ijk,ka->ija', prev_h, self.h2h_W) + \
tf.einsum('ijk,ka->ija', prev_y, self.i2h_W) + \
tf.matmul(z, self.z2h_W) + \
self.b # preactivation
# [1, batch_size, hidden_size * 4]
i = tf.sigmoid(preact[:, :, 0*hs: 1*hs])
f = tf.sigmoid(preact[:, :, 1*hs: 2*hs])
o = tf.sigmoid(preact[:, :, 2*hs: 3*hs])
c = tf.tanh(preact[:, :, 3*hs: 4*hs])
c = f * prev_c + i * c # [1, batch_size, hidden_size] (element-wise multiply)
h = o * tf.tanh(c) # [1, batch_size, hidden_size]
y = tf.einsum('ijk,ka->ija', h, self.Vhid) + self.bhid # [1, batch_size, vocab_size]
# Author doesn't mention this part in his paper, but it appers in his code
# So I assume this is part of his soft-max approx. strategy ---|
max_y = tf.reduce_max(y, axis=1, keep_dims=True) # [1, 1, vocab_size]
e = tf.exp((y - max_y) * self.L) # [1, batch_size, vocab_size]
w = e / tf.reduce_sum(e, axis=1, keep_dims=True) # [1, batch_size, vocab_size]
# Assumption ends here ----------------------------------------|
y = tf.einsum('ijk,ka->ija', w, self.Wemb) # [1, batch_size, input_dim]
return y, h, c