本文整理汇总了Python中tensorflow.disable_v2_behavior方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.disable_v2_behavior方法的具体用法?Python tensorflow.disable_v2_behavior怎么用?Python tensorflow.disable_v2_behavior使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.disable_v2_behavior方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: tfp_schools_model
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import disable_v2_behavior [as 别名]
def tfp_schools_model(num_schools, treatment_stddevs):
"""Non-centered eight schools model for tfp."""
import tensorflow_probability.python.edward2 as ed
import tensorflow as tf
if int(tf.__version__[0]) > 1:
import tensorflow.compat.v1 as tf # pylint: disable=import-error
tf.disable_v2_behavior()
avg_effect = ed.Normal(loc=0.0, scale=10.0, name="avg_effect") # `mu`
avg_stddev = ed.Normal(loc=5.0, scale=1.0, name="avg_stddev") # `log(tau)`
school_effects_standard = ed.Normal(
loc=tf.zeros(num_schools), scale=tf.ones(num_schools), name="school_effects_standard"
) # `eta`
school_effects = avg_effect + tf.exp(avg_stddev) * school_effects_standard # `theta`
treatment_effects = ed.Normal(
loc=school_effects, scale=treatment_stddevs, name="treatment_effects"
) # `y`
return treatment_effects
示例2: get_inference_data3
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import disable_v2_behavior [as 别名]
def get_inference_data3(self, data, eight_schools_params):
"""Read with observed Tensor var_names and dims."""
import tensorflow as tf
if int(tf.__version__[0]) > 1:
import tensorflow.compat.v1 as tf # pylint: disable=import-error
tf.disable_v2_behavior()
inference_data = from_tfp(
data.obj,
var_names=["mu", "tau", "eta"],
model_fn=lambda: data.model(
eight_schools_params["J"], eight_schools_params["sigma"].astype(np.float32)
),
posterior_predictive_samples=100,
posterior_predictive_size=3,
observed=tf.convert_to_tensor(
np.vstack(
(
eight_schools_params["y"],
eight_schools_params["y"],
eight_schools_params["y"],
)
).astype(np.float32),
np.float32,
),
coords={"school": np.arange(eight_schools_params["J"])},
dims={"eta": ["school"], "obs": ["size_dim", "school"]},
)
return inference_data
示例3: tf_logs
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import disable_v2_behavior [as 别名]
def tf_logs(tmpdir_factory):
import numpy as np
try:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
except ImportError:
import tensorflow as tf
x = np.random.rand(5)
y = 3 * x + 1 + 0.05 * np.random.rand(5)
a = tf.Variable(0.1)
b = tf.Variable(0.)
err = a*x+b-y
loss = tf.norm(err)
tf.summary.scalar("loss", loss)
tf.summary.scalar("a", a)
tf.summary.scalar("b", b)
merged = tf.summary.merge_all()
optimizor = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
with tf.Session() as sess:
log_dir = tmpdir_factory.mktemp("logs", numbered=False)
log_dir = str(log_dir)
train_write = tf.summary.FileWriter(log_dir, sess.graph)
tf.global_variables_initializer().run()
for i in range(1000):
_, merged_ = sess.run([optimizor, merged])
train_write.add_summary(merged_, i)
return log_dir
示例4: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import disable_v2_behavior [as 别名]
def __init__(
self,
*,
posterior,
var_names=None,
model_fn=None,
feed_dict=None,
posterior_predictive_samples=100,
posterior_predictive_size=1,
chain_dim=None,
observed=None,
coords=None,
dims=None
):
self.posterior = posterior
if var_names is None:
self.var_names = []
for i in range(0, len(posterior)):
self.var_names.append("var_{0}".format(i))
else:
self.var_names = var_names
self.model_fn = model_fn
self.feed_dict = feed_dict
self.posterior_predictive_samples = posterior_predictive_samples
self.posterior_predictive_size = posterior_predictive_size
self.observed = observed
self.chain_dim = chain_dim
self.coords = coords
self.dims = dims
import tensorflow_probability as tfp
import tensorflow as tf
import tensorflow_probability.python.edward2 as ed
self.tfp = tfp
self.tf = tf # pylint: disable=invalid-name
self.ed = ed # pylint: disable=invalid-name
if int(self.tf.__version__[0]) > 1:
import tensorflow.compat.v1 as tf # pylint: disable=import-error
tf.disable_v2_behavior()
self.tf = tf # pylint: disable=invalid-name
示例5: tfp_noncentered_schools
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import disable_v2_behavior [as 别名]
def tfp_noncentered_schools(data, draws, chains):
"""Non-centered eight schools implementation for tfp."""
import tensorflow_probability as tfp
import tensorflow_probability.python.edward2 as ed
import tensorflow as tf
if int(tf.__version__[0]) > 1:
import tensorflow.compat.v1 as tf # pylint: disable=import-error
tf.disable_v2_behavior()
del chains
log_joint = ed.make_log_joint_fn(tfp_schools_model)
def target_log_prob_fn(avg_effect, avg_stddev, school_effects_standard):
"""Unnormalized target density as a function of states."""
return log_joint(
num_schools=data["J"],
treatment_stddevs=data["sigma"].astype(np.float32),
avg_effect=avg_effect,
avg_stddev=avg_stddev,
school_effects_standard=school_effects_standard,
treatment_effects=data["y"].astype(np.float32),
)
states, kernel_results = tfp.mcmc.sample_chain(
num_results=draws,
num_burnin_steps=500,
current_state=[
tf.zeros([], name="init_avg_effect"),
tf.zeros([], name="init_avg_stddev"),
tf.ones([data["J"]], name="init_school_effects_standard"),
],
kernel=tfp.mcmc.HamiltonianMonteCarlo(
target_log_prob_fn=target_log_prob_fn, step_size=0.4, num_leapfrog_steps=3
),
)
with tf.Session() as sess:
[states_, _] = sess.run([states, kernel_results])
return tfp_schools_model, states_
示例6: run_nn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import disable_v2_behavior [as 别名]
def run_nn(hdf5, experiment, code_size_1, code_size_2):
# tf.disable_v2_behavior()
exp_storage = hdf5["experiments"][experiment]
for fold in exp_storage:
experiment_cv = format_config("{experiment}_{fold}", {
"experiment": experiment,
"fold": fold,
})
X_train, y_train, \
X_valid, y_valid, \
X_test, y_test = load_fold(hdf5["patients"], exp_storage, fold)
ae1_model_path = format_config("./data/models/{experiment}_autoencoder-1.ckpt", {
"experiment": experiment_cv,
})
ae2_model_path = format_config("./data/models/{experiment}_autoencoder-2.ckpt", {
"experiment": experiment_cv,
})
nn_model_path = format_config("./data/models/{experiment}_mlp.ckpt", {
"experiment": experiment_cv,
})
reset()
# Run first autoencoder
run_autoencoder1(experiment_cv,
X_train, y_train, X_valid, y_valid, X_test, y_test,
model_path=ae1_model_path,
code_size=code_size_1)
reset()
# Run second autoencoder
run_autoencoder2(experiment_cv,
X_train, y_train, X_valid, y_valid, X_test, y_test,
model_path=ae2_model_path,
prev_model_path=ae1_model_path,
prev_code_size=code_size_1,
code_size=code_size_2)
reset()
# Run multilayer NN with pre-trained autoencoders
run_finetuning(experiment_cv,
X_train, y_train, X_valid, y_valid, X_test, y_test,
model_path=nn_model_path,
prev_model_1_path=ae1_model_path,
prev_model_2_path=ae2_model_path,
code_size_1=code_size_1,
code_size_2=code_size_2)