本文整理汇总了Python中tensorflow.diag方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.diag方法的具体用法?Python tensorflow.diag怎么用?Python tensorflow.diag使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.diag方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: transition
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def transition(h,share=None):
# compute A,B,o linearization matrices
with tf.variable_scope("trans",reuse=share):
for l in range(2):
h=ReLU(h,100,"l"+str(l))
with tf.variable_scope("A"):
v,r=tf.split(1,2,linear(h,z_dim*2))
v1=tf.expand_dims(v,-1) # (batch, z_dim, 1)
rT=tf.expand_dims(r,1) # batch, 1, z_dim
I=tf.diag([1.]*z_dim)
A=(I+tf.batch_matmul(v1,rT)) # (z_dim, z_dim) + (batch, z_dim, 1)*(batch, 1, z_dim) (I is broadcasted)
with tf.variable_scope("B"):
B=linear(h,z_dim*u_dim)
B=tf.reshape(B,[-1,z_dim,u_dim])
with tf.variable_scope("o"):
o=linear(h,z_dim)
return A,B,o,v,r
示例2: transition
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def transition(h):
# compute A,B,o linearization matrices
with tf.variable_scope("trans"):
for l in range(2):
h=ReLU(h,100,"l"+str(l))
with tf.variable_scope("A"):
v,r=tf.split(1,2,linear(h,z_dim*2))
v1=tf.expand_dims(v,-1) # (batch, z_dim, 1)
rT=tf.expand_dims(r,1) # batch, 1, z_dim
I=tf.diag([1.]*z_dim)
A=(I+tf.batch_matmul(v1,rT)) # (z_dim, z_dim) + (batch, z_dim, 1)*(batch, 1, z_dim) (I is broadcasted)
with tf.variable_scope("B"):
B=linear(h,z_dim*u_dim)
B=tf.reshape(B,[-1,z_dim,u_dim])
with tf.variable_scope("o"):
o=linear(h,z_dim)
return A,B,o,v,r
示例3: _symmetric_matrix_square_root
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def _symmetric_matrix_square_root(mat, eps=1e-10):
"""Compute square root of a symmetric matrix.
Note that this is different from an elementwise square root. We want to
compute M' where M' = sqrt(mat) such that M' * M' = mat.
Also note that this method **only** works for symmetric matrices.
Args:
mat: Matrix to take the square root of.
eps: Small epsilon such that any element less than eps will not be square
rooted to guard against numerical instability.
Returns:
Matrix square root of mat.
"""
# Unlike numpy, tensorflow's return order is (s, u, v)
s, u, v = tf.svd(mat)
# sqrt is unstable around 0, just use 0 in such case
si = tf.where(tf.less(s, eps), s, tf.sqrt(s))
# Note that the v returned by Tensorflow is v = V
# (when referencing the equation A = U S V^T)
# This is unlike Numpy which returns v = V^T
return tf.matmul(
tf.matmul(u, tf.diag(si)), v, transpose_b=True)
示例4: build
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def build(self, input_shape):
self.spatial_ker_weights = self.add_weight(name='spatial_ker_weights',
shape=(self.num_classes,),
initializer=tf.initializers.truncated_normal(mean=0, stddev=0.1),
trainable=True)
self.spatial_ker_weights = tf.diag(self.spatial_ker_weights)
self.bilateral_ker_weights = self.add_weight(name='bilateral_ker_weights',
shape=(self.num_classes,),
initializer=tf.initializers.truncated_normal(mean=0, stddev=0.1),
trainable=True)
self.bilateral_ker_weights = tf.diag(self.bilateral_ker_weights)
self.compatibility_matrix = self.add_weight(name='compatibility_matrix',
shape=(self.num_classes, self.num_classes),
initializer=tf.initializers.truncated_normal(mean=0, stddev=0.1),
trainable=True)
super(CRF_RNN_Layer, self).build(input_shape)
示例5: starting_point
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def starting_point(self, random=False):
"""Heuristic to find a starting point candidate
Parameters
----------
random : `bool`
Use a random orthogonal matrix instead of identity
Returns
-------
startint_point : `np.ndarray`, shape=(n_nodes, n_nodes)
A starting point candidate
"""
sqrt_C = sqrtm(self.covariance)
sqrt_L = np.sqrt(self.mean_intensity)
if random:
random_matrix = np.random.rand(self.n_nodes, self.n_nodes)
M, _ = qr(random_matrix)
else:
M = np.eye(self.n_nodes)
initial = np.dot(np.dot(sqrt_C, M), np.diag(1. / sqrt_L))
return initial
示例6: solve_ridge
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def solve_ridge(x, y, ridge_factor):
with tf.name_scope("solve_ridge"):
# Added a column of ones to the end of the feature matrix for bias
A = tf.concat([x, tf.ones((x.shape.as_list()[0], 1))], axis=1)
# Analytic solution for the ridge regression loss
inv_target = tf.matmul(A, A, transpose_a=True)
np_diag_penalty = ridge_factor * np.ones(
A.shape.as_list()[1], dtype="float32")
# Remove penalty on bias component of weights
np_diag_penalty[-1] = 0.
diag_penalty = tf.constant(np_diag_penalty)
inv_target += tf.diag(diag_penalty)
inv = tf.matrix_inverse(inv_target)
w = tf.matmul(inv, tf.matmul(A, y, transpose_a=True))
return w
示例7: _covariance
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def _covariance(x, diag):
"""Defines the covariance operation of a matrix.
Args:
x: a matrix Tensor. Dimension 0 should contain the number of examples.
diag: if True, it computes the diagonal covariance.
Returns:
A Tensor representing the covariance of x. In the case of
diagonal matrix just the diagonal is returned.
"""
num_points = tf.to_float(tf.shape(x)[0])
x -= tf.reduce_mean(x, 0, keep_dims=True)
if diag:
cov = tf.reduce_sum(
tf.square(x), 0, keep_dims=True) / (num_points - 1)
else:
cov = tf.matmul(x, x, transpose_a=True) / (num_points - 1)
return cov
示例8: transition
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def transition(h,share=None):
# compute A,B,o linearization matrices
with tf.variable_scope("trans",reuse=share):
for l in range(2):
h=ReLU(h,100,"aggregate_loss"+str(l))
with tf.variable_scope("A"):
v,r=tf.split(1,2,linear(h,z_dim*2))
v1=tf.expand_dims(v,-1) # (batch, z_dim, 1)
rT=tf.expand_dims(r,1) # batch, 1, z_dim
I=tf.diag([1.]*z_dim)
A=(I+tf.batch_matmul(v1,rT)) # (z_dim, z_dim) + (batch, z_dim, 1)*(batch, 1, z_dim) (I is broadcasted)
with tf.variable_scope("B"):
B=linear(h,z_dim*u_dim)
B=tf.reshape(B,[-1,z_dim,u_dim])
with tf.variable_scope("o"):
o=linear(h,z_dim)
return A,B,o,v,r
示例9: transition
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def transition(h):
# compute A,B,o linearization matrices
with tf.variable_scope("trans"):
for l in range(2):
h = ReLU(h, 100, "aggregate_loss" + str(l))
with tf.variable_scope("A"):
v, r = tf.split(1, 2, linear(h, z_dim * 2))
v1 = tf.expand_dims(v, -1) # (batch, z_dim, 1)
rT = tf.expand_dims(r, 1) # batch, 1, z_dim
I = tf.diag([1.] * z_dim)
A = (
I + tf.batch_matmul(v1, rT)
) # (z_dim, z_dim) + (batch, z_dim, 1)*(batch, 1, z_dim) (I is broadcasted)
with tf.variable_scope("B"):
B = linear(h, z_dim * u_dim)
B = tf.reshape(B, [-1, z_dim, u_dim])
with tf.variable_scope("o"):
o = linear(h, z_dim)
return A, B, o, v, r
示例10: regularize_diag_off_diag_dip
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def regularize_diag_off_diag_dip(covariance_matrix, lambda_od, lambda_d):
"""Compute on and off diagonal regularizers for DIP-VAE models.
Penalize deviations of covariance_matrix from the identity matrix. Uses
different weights for the deviations of the diagonal and off diagonal entries.
Args:
covariance_matrix: Tensor of size [num_latent, num_latent] to regularize.
lambda_od: Weight of penalty for off diagonal elements.
lambda_d: Weight of penalty for diagonal elements.
Returns:
dip_regularizer: Regularized deviation from diagonal of covariance_matrix.
"""
covariance_matrix_diagonal = tf.diag_part(covariance_matrix)
covariance_matrix_off_diagonal = covariance_matrix - tf.diag(
covariance_matrix_diagonal)
dip_regularizer = tf.add(
lambda_od * tf.reduce_sum(covariance_matrix_off_diagonal**2),
lambda_d * tf.reduce_sum((covariance_matrix_diagonal - 1)**2))
return dip_regularizer
示例11: BatchedSparseToDense
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def BatchedSparseToDense(sparse_indices, output_size):
"""Batch compatible sparse to dense conversion.
This is useful for one-hot coded target labels.
Args:
sparse_indices: [batch_size] tensor containing one index per batch
output_size: needed in order to generate the correct dense output
Returns:
A [batch_size, output_size] dense tensor.
"""
eye = tf.diag(tf.fill([output_size], tf.constant(1, tf.float32)))
return tf.nn.embedding_lookup(eye, sparse_indices)
示例12: pullaway_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def pullaway_loss(embeddings):
"""
Pull Away loss calculation
:param embeddings: The embeddings to be orthogonalized for varied faces. Shape [batch_size, embeddings_dim]
:return: pull away term loss
"""
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
similarity = tf.matmul(
normalized_embeddings, normalized_embeddings, transpose_b=True)
similarity -= tf.diag(tf.diag_part(similarity))
batch_size = tf.cast(tf.shape(embeddings)[0], tf.float32)
pt_loss = tf.reduce_sum(similarity) / (batch_size * (batch_size - 1))
return pt_loss
示例13: get_matrix
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def get_matrix(self):
return tf.diag(tf.fill([self.dims], self.tf_variance_scalar))
示例14: get_matrix
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def get_matrix(self):
tf_base_times_eye = tf.diag(tf.fill([self.dims], self.tf_baseline))
tf_eig_vec_val = tf.matmul(tf.transpose(self.tf_eigvecs), tf.diag(self.tf_eigvals))
tf_eig_vec_val_vec = tf.matmul(tf_eig_vec_val, self.tf_eigvecs)
return tf_base_times_eye + tf_eig_vec_val_vec
示例15: get_prior_adjustment
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import diag [as 别名]
def get_prior_adjustment(self, original, gamma_sum):
tf_adjusted = original
tf_adjusted *= gamma_sum
tf_adjusted += tf.diag(tf.fill([self.dims], 2.0 * self.tf_beta))
tf_adjusted /= gamma_sum + (2.0 * (self.tf_alpha + 1.0))
return tf_adjusted