当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.custom_gradient方法代码示例

本文整理汇总了Python中tensorflow.custom_gradient方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.custom_gradient方法的具体用法?Python tensorflow.custom_gradient怎么用?Python tensorflow.custom_gradient使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.custom_gradient方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_loss_fn

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def get_loss_fn(self, minimization_problem):
    """Returns the loss function.

    The resulting loss function should use `tf.custom_gradient` to override its
    gradients. First, the gradients w.r.t. the internal state should be written
    in terms of the constraints, instead of the proxy_constraints. Second, the
    gradients may be negated, depending on the formulation (for example, for the
    Lagrangian formulation, we wish to maximize over the Lagrange multipliers,
    so the associated gradients will be negated).

    Args:
      minimization_problem: `ConstrainedMinimizationProblem`, the problem to
        minimize.

    Returns:
      The loss function.
    """ 
开发者ID:google-research,项目名称:tensorflow_constrained_optimization,代码行数:19,代码来源:constrained_optimizer.py

示例2: ste_tern

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def ste_tern(
    x: tf.Tensor,
    threshold_value: float = 0.05,
    ternary_weight_networks: bool = False,
    clip_value: float = 1.0,
) -> tf.Tensor:
    @tf.custom_gradient
    def _call(x):
        if ternary_weight_networks:
            threshold = 0.7 * tf.reduce_sum(tf.abs(x)) / tf.cast(tf.size(x), x.dtype)
        else:
            threshold = threshold_value

        def grad(dy):
            return _clipped_gradient(x, dy, clip_value)

        return tf.sign(tf.sign(x + threshold) + tf.sign(x - threshold)), grad

    return _call(x) 
开发者ID:larq,项目名称:larq,代码行数:21,代码来源:quantizers.py

示例3: quantize

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def quantize(self,tensor):
        @tf.custom_gradient
        def op(tensor):
            def grad(dy):
                return dy
            randn = tf.random.uniform(tensor.shape, minval=0, maxval=1 )
            out_up = tf.math.ceil( tensor*(1<<self.fixed_prec) ) / (1<<self.fixed_prec)
            out_down = tf.math.floor( tensor*(1<<self.fixed_prec) ) / (1<<self.fixed_prec)
            out_mask = tf.less_equal( (tensor-tf.math.floor(tensor))*(1<<self.fixed_prec) ,randn )
            out = out_down * tf.dtypes.cast(out_mask, tensor.dtype) + out_up * tf.dtypes.cast(tf.math.logical_not(out_mask), tensor.dtype)
            # handle overflow (saturate number towards maximum or minimum)
            out = tf.math.maximum( tf.math.minimum( out, self.fixed_max_signed ), self.fixed_min_signed)
            # tag output
            out = tf.identity(out, name=str(self)+"_output")
            return out, grad
        return op(tensor)


###############################
### Logarithmic
############################### 
开发者ID:cc-hpc-itwm,项目名称:TensorQuant,代码行数:23,代码来源:Quantizers.py

示例4: P_quantize

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def P_quantize(self, tensor):
        @tf.custom_gradient
        def op(tensor):
            def grad(dy):
                return dy
            #randn = tf.random.uniform(tensor.shape, minval=0, maxval=1 )
            #mask = tf.dtypes.cast(tf.less(tensor,randn), tensor.dtype)
            out= tf.math.floor(tf.math.log(tf.math.abs(tensor))/tf.math.log(tf.constant(2,dtype=tensor.dtype))) #+ mask
            out= tf.math.pow(2*tf.ones_like(tensor),out)
            out= out*tf.sign(tensor)
            out = tf.identity(out, name=str(self)+"_output")
            return out, grad
        return op(tensor)


###############################
### Sparse
############################### 
开发者ID:cc-hpc-itwm,项目名称:TensorQuant,代码行数:20,代码来源:Quantizers.py

示例5: __call__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def __call__(self, *parameters, solver_args={}):
        """Solve problem (or a batch of problems) corresponding to `parameters`

        Args:
          parameters: a sequence of tf.Tensors; the n-th Tensor specifies
                      the value for the n-th CVXPY Parameter. These Tensors
                      can be batched: if a Tensor has 3 dimensions, then its
                      first dimension is interpreted as the batch size.
          solver_args: a dict of optional arguments, to send to `diffcp`. Keys
                       should be the names of keyword arguments.

        Returns:
          a list of optimal variable values, one for each CVXPY Variable
          supplied to the constructor.
        """
        if len(parameters) != len(self.params):
            raise ValueError('A tensor must be provided for each CVXPY '
                             'parameter; received %d tensors, expected %d' % (
                                 len(parameters), len(self.params)))
        compute = tf.custom_gradient(
            lambda *parameters: self._compute(parameters, solver_args))
        return compute(*parameters) 
开发者ID:cvxgrp,项目名称:cvxpylayers,代码行数:24,代码来源:cvxpylayer.py

示例6: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def __init__(self, name, inputs, tower_setup, initial_weights, hack_gradient_magnitude=1.0):
    super().__init__()
    assert len(initial_weights) == len(inputs)
    with tf.variable_scope(name):
      initializer = tf.constant_initializer(initial_weights)
      weights = self.create_bias_variable("linear_combination_weights", len(inputs), tower_setup,
                                          initializer=initializer)
      if hack_gradient_magnitude > 1.0:
        # https://stackoverflow.com/a/43948872
        @tf.custom_gradient
        def amplify_gradient_layer(x):
          def grad(dy):
            return hack_gradient_magnitude * dy
          return tf.identity(x), grad
        weights = amplify_gradient_layer(weights)
      y = inputs[0] * weights[0]
      for n in range(1, len(inputs)):
        y += inputs[n] * weights[n]
      self.outputs.append(y)
      for n in range(len(inputs)):
        self.add_scalar_summary(weights[n], "linear_combination_weights_" + str(n)) 
开发者ID:VisualComputingInstitute,项目名称:TrackR-CNN,代码行数:23,代码来源:UtilLayers.py

示例7: eager_tensorflow_from_torch

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def eager_tensorflow_from_torch(func):
    """
    Wraps a PyTorch function into a TensorFlow eager-mode function (ie can be executed within Tensorflow eager-mode).

    :param func: Function that takes PyTorch tensors and returns a PyTorch tensor.
    :return: Differentiable Tensorflow eager-mode function.
    """

    @tf.custom_gradient
    def compute(*inputs):
        th_inputs = [th.tensor(tf_input.numpy(), requires_grad=True) for tf_input in inputs]
        th_output = func(*th_inputs)

        def compute_grad(d_output):
            th_d_output = th.tensor(d_output.numpy(), requires_grad=False)
            th_gradients = th.autograd.grad([th_output], th_inputs, grad_outputs=[th_d_output], allow_unused=True)
            tf_gradients = [tf.convert_to_tensor(th_gradient.numpy()) for th_gradient in th_gradients]
            return tf_gradients

        return tf.convert_to_tensor(th_output.detach().numpy()), compute_grad

    return compute 
开发者ID:BlackHC,项目名称:tfpyth,代码行数:24,代码来源:__init__.py

示例8: blur2d

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def blur2d(x, f, normalize=True):
    with tf.variable_scope('Blur2D'):
        @tf.custom_gradient
        def func(x):
            y = _blur2d(x, f, normalize)

            @tf.custom_gradient
            def grad(dy):
                dx = _blur2d(dy, f, normalize, flip=True)
                return dx, lambda ddx: _blur2d(ddx, f, normalize)

            return y, grad

        return func(x) 
开发者ID:taki0112,项目名称:StyleGAN-Tensorflow,代码行数:16,代码来源:ops.py

示例9: upscale2d

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def upscale2d(x, factor=2):
    with tf.variable_scope('Upscale2D'):
        @tf.custom_gradient
        def func(x):
            y = _upscale2d(x, factor)

            @tf.custom_gradient
            def grad(dy):
                dx = _downscale2d(dy, factor, gain=factor ** 2)
                return dx, lambda ddx: _upscale2d(ddx, factor)

            return y, grad

        return func(x) 
开发者ID:taki0112,项目名称:StyleGAN-Tensorflow,代码行数:16,代码来源:ops.py

示例10: downscale2d

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def downscale2d(x, factor=2):
    with tf.variable_scope('Downscale2D'):
        @tf.custom_gradient
        def func(x):
            y = _downscale2d(x, factor)

            @tf.custom_gradient
            def grad(dy):
                dx = _upscale2d(dy, factor, gain=1 / factor ** 2)
                return dx, lambda ddx: _downscale2d(ddx, factor)

            return y, grad

        return func(x) 
开发者ID:taki0112,项目名称:StyleGAN-Tensorflow,代码行数:16,代码来源:ops.py

示例11: call

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def call(self, input_):
        @tf.custom_gradient
        def _call(input_):
            def reversed_gradient(output_grads):
                return self.weight * tf.negative(output_grads)

            return input_, reversed_gradient
        
        return _call(input_)


# ## The model function
# The network consists of 3 sub-networks:
#
# * Feature extractor: extracts internal representation for both the source and target distributions.
#
# * Label predictor: predicts label from the extracted features.
#
# * Domain classifier: classifies the origin (`source` or `target`) of the extracted features.
#
#
# Both the label predictor and the domain classifier will try to minimize 
# classification loss, but the gradients backpropagated from the domain
# classifier to the feature extractor have their signs reversed.
#
#
# This model function also shows how to use `host_call` to output summaries.
# 
开发者ID:GoogleCloudPlatform,项目名称:cloudml-samples,代码行数:30,代码来源:trainer.py

示例12: edge_softmax

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def edge_softmax(graph, logits, eids=ALL):
    """Closure for tf.custom_gradient"""

    @tf.custom_gradient
    def _lambda(logits):
        return edge_softmax_real(graph, logits, eids=eids)

    return _lambda(logits) 
开发者ID:dmlc,项目名称:dgl,代码行数:10,代码来源:softmax.py

示例13: binary_reduce

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def binary_reduce(reducer, binary_op, graph, lhs, rhs, lhs_data, rhs_data,
                  out_size, lhs_map=(None, None), rhs_map=(None, None), out_map=(None, None)):

    @tf.custom_gradient
    def _lambda(lhs_data, rhs_data):
        return binary_reduce_real(reducer, binary_op, graph, lhs, rhs, lhs_data, rhs_data,
                                  out_size, lhs_map, rhs_map, out_map)
    return _lambda(lhs_data, rhs_data) 
开发者ID:dmlc,项目名称:dgl,代码行数:10,代码来源:tensor.py

示例14: copy_reduce

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def copy_reduce(reducer, graph, target, in_data, out_size, in_map=(None, None),
                out_map=(None, None)):
    @tf.custom_gradient
    def _lambda(in_data):
        return copy_reduce_real(reducer, graph, target, in_data, out_size, in_map,
                                out_map)
    return _lambda(in_data) 
开发者ID:dmlc,项目名称:dgl,代码行数:9,代码来源:tensor.py

示例15: ste_sign

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import custom_gradient [as 别名]
def ste_sign(x: tf.Tensor, clip_value: float = 1.0) -> tf.Tensor:
    @tf.custom_gradient
    def _call(x):
        def grad(dy):
            return _clipped_gradient(x, dy, clip_value)

        return math.sign(x), grad

    return _call(x) 
开发者ID:larq,项目名称:larq,代码行数:11,代码来源:quantizers.py


注:本文中的tensorflow.custom_gradient方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。