当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.cos方法代码示例

本文整理汇总了Python中tensorflow.cos方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.cos方法的具体用法?Python tensorflow.cos怎么用?Python tensorflow.cos使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.cos方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_timing_signal

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def get_timing_signal(length,
                      min_timescale=1,
                      max_timescale=1e4,
                      num_timescales=16):
  """Create Tensor of sinusoids of different frequencies.

  Args:
    length: Length of the Tensor to create, i.e. Number of steps.
    min_timescale: a float
    max_timescale: a float
    num_timescales: an int

  Returns:
    Tensor of shape (length, 2*num_timescales)
  """
  positions = tf.to_float(tf.range(length))
  log_timescale_increment = (
      math.log(max_timescale / min_timescale) / (num_timescales - 1))
  inv_timescales = min_timescale * tf.exp(
      tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
  scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
  return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:24,代码来源:common_layers.py

示例2: rotate_point_cloud_by_angle_y

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def rotate_point_cloud_by_angle_y(batch_data, rotation_angle):
	""" Rotate the point cloud along up direction with certain angle.
		Input:
		  BxNx3 array, original batch of point clouds
		Return:
		  BxNx3 array, rotated batch of point clouds
	"""
	rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
	for k in range(batch_data.shape[0]):
		#rotation_angle = np.random.uniform() * 2 * np.pi
		cosval = np.cos(rotation_angle)
		sinval = np.sin(rotation_angle)
		rotation_matrix = np.array([[cosval, 0, sinval],
									[0, 1, 0],
									[-sinval, 0, cosval]])
		shape_pc = batch_data[k, ...]
		# rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
		rotated_data[k, ...] = np.dot(rotation_matrix, shape_pc.reshape((-1, 3)).T).T 		# Pre-Multiplication (changes done)
	return rotated_data 
开发者ID:vinits5,项目名称:pointnet-registration-framework,代码行数:21,代码来源:helper.py

示例3: rotate_point_cloud_by_angle_x

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def rotate_point_cloud_by_angle_x(batch_data, rotation_angle):
	""" Rotate the point cloud along up direction with certain angle.
		Input:
		  BxNx3 array, original batch of point clouds
		Return:
		  BxNx3 array, rotated batch of point clouds
	"""
	rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
	for k in range(batch_data.shape[0]):
		#rotation_angle = np.random.uniform() * 2 * np.pi
		cosval = np.cos(rotation_angle)
		sinval = np.sin(rotation_angle)
		rotation_matrix = np.array([[1, 0, 0],
									[0, cosval, -sinval],
									[0, sinval, cosval]])
		shape_pc = batch_data[k, ...]
		# rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
		rotated_data[k, ...] = np.dot(rotation_matrix, shape_pc.reshape((-1, 3)).T).T 		# Pre-Multiplication (changes done)
	return rotated_data 
开发者ID:vinits5,项目名称:pointnet-registration-framework,代码行数:21,代码来源:helper.py

示例4: rotate_point_cloud_by_angle_z

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def rotate_point_cloud_by_angle_z(batch_data, rotation_angle):
	""" Rotate the point cloud along up direction with certain angle.
		Input:
		  BxNx3 array, original batch of point clouds
		Return:
		  BxNx3 array, rotated batch of point clouds
	"""
	rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
	for k in range(batch_data.shape[0]):
		#rotation_angle = np.random.uniform() * 2 * np.pi
		cosval = np.cos(rotation_angle)
		sinval = np.sin(rotation_angle)
		rotation_matrix = np.array([[cosval, -sinval, 0],
									[sinval, cosval, 0],
									[0, 0, 1]])
		shape_pc = batch_data[k, ...]
		# rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
		rotated_data[k, ...] = np.dot(rotation_matrix, shape_pc.reshape((-1, 3)).T).T 		# Pre-Multiplication (changes done)
	return rotated_data

# Translate the data as per given translation vector. 
开发者ID:vinits5,项目名称:pointnet-registration-framework,代码行数:23,代码来源:helper.py

示例5: locationPE

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def locationPE(h, w, dim, outDim = -1, addBias = True):    
    x = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, w)), axis = -1)
    y = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, h)), axis = -1)
    i = tf.expand_dims(tf.to_float(tf.range(dim)), axis = 0)

    peSinX = tf.sin(x / (tf.pow(10000.0, i / dim)))
    peCosX = tf.cos(x / (tf.pow(10000.0, i / dim)))
    peSinY = tf.sin(y / (tf.pow(10000.0, i / dim)))
    peCosY = tf.cos(y / (tf.pow(10000.0, i / dim)))

    peSinX = tf.tile(tf.expand_dims(peSinX, axis = 0), [h, 1, 1])
    peCosX = tf.tile(tf.expand_dims(peCosX, axis = 0), [h, 1, 1])
    peSinY = tf.tile(tf.expand_dims(peSinY, axis = 1), [1, w, 1])
    peCosY = tf.tile(tf.expand_dims(peCosY, axis = 1), [1, w, 1]) 

    grid = tf.concat([peSinX, peCosX, peSinY, peCosY], axis = -1)
    dim *= 4
    
    if outDim > 0:
        grid = linear(grid, dim, outDim, addBias = addBias, name = "locationPE")
        dim = outDim

    return grid, dim 
开发者ID:stanfordnlp,项目名称:mac-network,代码行数:25,代码来源:ops.py

示例6: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def __init__(self, position_size, hparams=None):
        EmbedderBase.__init__(self, hparams=hparams)

        dim = self._hparams.dim
        num_timescales = dim // 2
        min_timescale = self._hparams.min_timescale
        max_timescale = self._hparams.max_timescale

        positions = tf.to_float(tf.range(position_size, dtype=tf.int32))
        log_timescale_increment = (
            math.log(float(max_timescale) / float(min_timescale)) /
            (tf.to_float(num_timescales) - 1))
        inv_timescales = min_timescale * tf.exp(
            tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
        scaled_time = tf.expand_dims(positions, 1) \
            * tf.expand_dims(inv_timescales, 0)
        signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
        signal = tf.pad(signal, [[0, 0], [0, tf.mod(dim, 2)]])
        self.signal = signal 
开发者ID:qkaren,项目名称:Counterfactual-StoryRW,代码行数:21,代码来源:position_embedders.py

示例7: radial_cutoff

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def radial_cutoff(self, R, rc):
    """Calculates radial cutoff matrix.

    B = batch_size, N = max_num_atoms, M = max_num_neighbors

    Parameters
    ----------
      R [B, N, M]: tf.Tensor
        Distance matrix.
      rc: tf.Variable
        Interaction cutoff [Angstrom].

    Returns
    -------
    FC [B, N, M]: tf.Tensor
      Radial cutoff matrix.
    """
    T = 0.5 * (tf.cos(np.pi * R / (rc)) + 1)
    E = tf.zeros_like(T)
    cond = tf.less_equal(R, rc)
    FC = tf.where(cond, T, E)
    return FC 
开发者ID:deepchem,项目名称:deepchem,代码行数:24,代码来源:layers.py

示例8: test_ODEbadprecision

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def test_ODEbadprecision(self):  # make sure float32 is not enough for very precise integration
        t = tf.constant(np.linspace(0, 10, 1000), dtype=tf.float32)
        # initial condition
        true_y0 = tf.constant([0., 5.], dtype=tf.float32)

        true_func = lambda y, t: np.sin(5*t)
        ode_func = lambda y, t: tf.cast(tf.stack([5*tf.cos(5*t), -25*tf.sin(5*t)]), tf.float32)
        true_y = odeint(ode_func, true_y0, t, method='dop853', precision=tf.float32)
        self.assertRaises(AssertionError, npt.assert_array_almost_equal, true_y.numpy()[:, 0], true_func(true_y0, t))

        true_y0_pretend_multidims = [[0., 5.]]  # to introduce a mix of list, np array, tensor to make sure no issue
        true_y_pretend_multidims = odeint(ode_func, true_y0_pretend_multidims, t, method='dop853', precision=tf.float32)

        # assert equal pretendinging multidim or not
        np.testing.assert_array_almost_equal(true_y_pretend_multidims[0], true_y)

        true_y0_multidims = tf.constant([[1., 2.], [0., 5.]], dtype=tf.float32)
        t = np.linspace(0, 10, 1000)
        true_y_multidims = odeint(ode_func, true_y0_multidims, t, method='dop853', precision=tf.float32)

        # assert equal in multidim or not
        np.testing.assert_array_almost_equal(true_y_multidims[1], true_y) 
开发者ID:henrysky,项目名称:astroNN,代码行数:24,代码来源:test_neuralODE.py

示例9: gaussian

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def gaussian(config, gan, net):
    z_dim = net.get_shape().as_list()[-1]
    net = (net + 1) / 2

    if len(gan.ops.shape(net)) == 4:
        za = tf.slice(net, [0,0,0,0], [gan.batch_size(), -1, -1, z_dim//2])
        zb = tf.slice(net, [0,0,0,z_dim//2], [gan.batch_size(), -1, -1, z_dim//2])
    else:
        za = tf.slice(net, [0,0], [gan.batch_size(), z_dim//2])
        zb = tf.slice(net, [0,z_dim//2], [gan.batch_size(), z_dim//2])

    pi = np.pi
    ra = tf.sqrt(-2 * tf.log(za+TINY))*tf.cos(2*pi*zb)
    rb = tf.sqrt(-2 * tf.log(za+TINY))*tf.sin(2*pi*zb)

    return tf.reshape(tf.concat(axis=len(net.get_shape())-1, values=[ra, rb]), net.get_shape()) 
开发者ID:HyperGAN,项目名称:HyperGAN,代码行数:18,代码来源:uniform_distribution.py

示例10: _configure_learning_rate

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def _configure_learning_rate(train_config, global_step):
  lr_config = train_config['lr_config']

  num_batches_per_epoch = \
    int(train_config['train_data_config']['num_examples_per_epoch'] / train_config['train_data_config']['batch_size'])

  lr_policy = lr_config['policy']
  if lr_policy == 'piecewise_constant':
    lr_boundaries = [int(e * num_batches_per_epoch) for e in lr_config['lr_boundaries']]
    return tf.train.piecewise_constant(global_step,
                                       lr_boundaries,
                                       lr_config['lr_values'])
  elif lr_policy == 'exponential':
    decay_steps = int(num_batches_per_epoch) * lr_config['num_epochs_per_decay']
    return tf.train.exponential_decay(lr_config['initial_lr'],
                                      global_step,
                                      decay_steps=decay_steps,
                                      decay_rate=lr_config['lr_decay_factor'],
                                      staircase=lr_config['staircase'])
  elif lr_policy == 'cosine':
    T_total = train_config['train_data_config']['epoch'] * num_batches_per_epoch
    return 0.5 * lr_config['initial_lr'] * (1 + tf.cos(np.pi * tf.to_float(global_step) / T_total))
  else:
    raise ValueError('Learning rate policy [%s] was not recognized', lr_policy) 
开发者ID:bilylee,项目名称:SiamFC-TensorFlow,代码行数:26,代码来源:train_siamese_model.py

示例11: batch_rodrigues

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def batch_rodrigues(theta, name=None):
    """
    Theta is N x 3
    """
    with tf.variable_scope(name, "batch_rodrigues", [theta]):
        batch_size = tf.shape(theta)[0]

        angle = tf.expand_dims(tf.norm(theta + 1e-8, axis=1), -1)
        r = tf.expand_dims(tf.div(theta, angle), -1)

        angle = tf.expand_dims(angle, -1)
        cos = tf.cos(angle)
        sin = tf.sin(angle)

        outer = tf.matmul(r, r, transpose_b=True, name="outer")

        eyes = tf.tile(tf.expand_dims(tf.eye(3), 0), [batch_size, 1, 1])
        R = cos * eyes + (1 - cos) * outer + sin * batch_skew(
            r, batch_size=batch_size)
        return R 
开发者ID:blzq,项目名称:tf_smpl,代码行数:22,代码来源:batch_lbs.py

示例12: radial_cutoff

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def radial_cutoff(self, R, rc):
    """Calculates radial cutoff matrix.

    B = batch_size, N = max_num_atoms, M = max_num_neighbors

    Parameters
    ----------
      R [B, N, M]: tf.Tensor
        Distance matrix.
      rc: tf.Variable
        Interaction cutoff [Angstrom].

    Returns
    -------
      FC [B, N, M]: tf.Tensor
        Radial cutoff matrix.

    """

    T = 0.5 * (tf.cos(np.pi * R / (rc)) + 1)
    E = tf.zeros_like(T)
    cond = tf.less_equal(R, rc)
    FC = tf.where(cond, T, E)
    return FC 
开发者ID:simonfqy,项目名称:PADME,代码行数:26,代码来源:layers.py

示例13: add_timing_signal

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def add_timing_signal(x, scope='', min_timescale=1.0, max_timescale=1.0e4):
        with tf.name_scope(scope, values=[x]):
            length = tf.shape(x)[1]
            channels = tf.shape(x)[2]
            position = tf.to_float(tf.range(length))
            num_timescales = channels // 2

            log_timescale_increment = (
                math.log(float(max_timescale) / float(min_timescale)) /
                (tf.to_float(num_timescales) - 1)
            )
            inv_timescales = min_timescale * tf.exp(
                tf.to_float(tf.range(num_timescales)) * -log_timescale_increment
            )

            scaled_time = (tf.expand_dims(position, 1) *
                           tf.expand_dims(inv_timescales, 0))
            signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
            signal = tf.pad(signal, [[0, 0], [0, tf.mod(channels, 2)]])
            signal = tf.reshape(signal, [1, length, channels])

            return x + signal 
开发者ID:sattree,项目名称:gap,代码行数:24,代码来源:coarse_grain_model_v2.py

示例14: get_timing_signal

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def get_timing_signal(length,
                      min_timescale=1,
                      max_timescale=1e4,
                      num_timescales=16):
  """Create Tensor of sinusoids of different frequencies.

  Args:
    length: Length of the Tensor to create, i.e. Number of steps.
    min_timescale: a float
    max_timescale: a float
    num_timescales: an int

  Returns:
    Tensor of shape (length, 2*num_timescales)
  """
  positions = to_float(tf.range(length))
  log_timescale_increment = (
      math.log(max_timescale / min_timescale) / (num_timescales - 1))
  inv_timescales = min_timescale * tf.exp(
      to_float(tf.range(num_timescales)) * -log_timescale_increment)
  scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
  return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) 
开发者ID:yyht,项目名称:BERT,代码行数:24,代码来源:common_layers.py

示例15: _position_encoding

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import cos [as 别名]
def _position_encoding(position_size, dim, 
                    min_timescale=1.0,
                    max_timescale=1.0e4):
    position = tf.to_float(tf.range(position_size))
    num_timescales = dim // 2
    log_timescale_increment = (
        math.log(float(max_timescale) / float(min_timescale)) /
        (tf.to_float(num_timescales) - 1))
    inv_timescales = min_timescale * tf.exp(
        tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
    scaled_time = tf.expand_dims(position, 1) \
        * tf.expand_dims(inv_timescales, 0)
    signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)
    signal = tf.pad(signal, [[0, 0], [0, tf.mod(dim, 2)]])
    signal = tf.reshape(signal, [1, position_size, dim])

    return signal 
开发者ID:yyht,项目名称:BERT,代码行数:19,代码来源:label_network_utils.py


注:本文中的tensorflow.cos方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。