本文整理汇总了Python中tensorflow.core.protobuf.config_pb2.RunOptions方法的典型用法代码示例。如果您正苦于以下问题:Python config_pb2.RunOptions方法的具体用法?Python config_pb2.RunOptions怎么用?Python config_pb2.RunOptions使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.core.protobuf.config_pb2
的用法示例。
在下文中一共展示了config_pb2.RunOptions方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testDebugWhileLoopWatchingWholeGraphWorks
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def testDebugWhileLoopWatchingWholeGraphWorks(self):
with session.Session() as sess:
loop_body = lambda i: math_ops.add(i, 2)
loop_cond = lambda i: math_ops.less(i, 16)
i = constant_op.constant(10, name="i")
loop = control_flow_ops.while_loop(loop_cond, loop_body, [i])
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(run_options,
sess.graph,
debug_urls=self._debug_urls())
run_metadata = config_pb2.RunMetadata()
self.assertEqual(
16, sess.run(loop, options=run_options, run_metadata=run_metadata))
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
self.assertEqual(
[[10]], dump.get_tensors("while/Enter", 0, "DebugIdentity"))
self.assertEqual(
[[12], [14], [16]],
dump.get_tensors("while/NextIteration", 0, "DebugIdentity"))
示例2: testDebugQueueOpsDoesNotoErrorOut
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def testDebugQueueOpsDoesNotoErrorOut(self):
with session.Session() as sess:
q = data_flow_ops.FIFOQueue(3, "float", name="fifo_queue")
q_init = q.enqueue_many(([101.0, 202.0, 303.0],), name="enqueue_many")
run_metadata = config_pb2.RunMetadata()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_urls=self._debug_urls())
sess.run(q_init, options=run_options, run_metadata=run_metadata)
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
self.assertTrue(dump.loaded_partition_graphs())
fifo_queue_tensor = dump.get_tensors("fifo_queue", 0, "DebugIdentity")[0]
self.assertIsInstance(fifo_queue_tensor,
debug_data.InconvertibleTensorProto)
self.assertTrue(fifo_queue_tensor.initialized)
self.assertAllClose(
[101.0, 202.0, 303.0],
dump.get_tensors("enqueue_many/component_0", 0, "DebugIdentity")[0])
示例3: _prepare_cont_call_dump_path_and_run_options
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def _prepare_cont_call_dump_path_and_run_options(self):
"""Prepare the dump path and RunOptions for next cont() call.
Returns:
dump_path: (str) Directory path to which the intermediate tensor will be
dumped.
run_options: (config_pb2.RunOptions) The RunOptions containing the tensor
watch options for this graph.
"""
run_options = config_pb2.RunOptions()
dump_path = self._cont_call_dump_path()
for element_name in self._closure_elements:
if ":" in element_name:
debug_utils.add_debug_tensor_watch(
run_options,
debug_data.get_node_name(element_name),
output_slot=debug_data.get_output_slot(element_name),
debug_urls=["file://" + dump_path])
return dump_path, run_options
示例4: __init__
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def __init__(self, fetches, feed_dict, run_options, run_metadata,
run_call_count):
"""Constructor of `OnRunStartRequest`.
Args:
fetches: Fetch targets of the run() call.
feed_dict: The feed dictionary to the run() call.
run_options: RunOptions input to the run() call.
run_metadata: RunMetadata input to the run() call.
The above four arguments are identical to the input arguments to the
run() method of a non-wrapped TensorFlow session.
run_call_count: 1-based count of how many run calls (including this one)
has been invoked.
"""
self.fetches = fetches
self.feed_dict = feed_dict
self.run_options = run_options
self.run_metadata = run_metadata
self.run_call_count = run_call_count
示例5: _merge_run_options
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def _merge_run_options(self, options, incoming_options):
"""Merge two instances of RunOptions into the first one.
During the merger, the numerical fields including trace_level,
timeout_in_ms, inter_op_thread_pool are set to the larger one of the two.
The boolean value is set to the logical OR of the two.
debug_tensor_watch_opts of the original options is extended with that from
the incoming one.
Args:
options: The options to merge into.
incoming_options: The options to be merged into the first argument.
"""
options.trace_level = max(options.trace_level, incoming_options.trace_level)
options.timeout_in_ms = max(options.timeout_in_ms,
incoming_options.timeout_in_ms)
options.inter_op_thread_pool = max(options.inter_op_thread_pool,
incoming_options.inter_op_thread_pool)
options.output_partition_graphs = max(
options.output_partition_graphs,
incoming_options.output_partition_graphs)
options.debug_options.debug_tensor_watch_opts.extend(
incoming_options.debug_options.debug_tensor_watch_opts)
示例6: __init__
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def __init__(self, fetches, feed_dict, run_options, run_metadata,
run_call_count):
"""Constructor of OnRunStartRequest.
Args:
fetches: Fetch targets of the run() call.
feed_dict: The feed dictionary to the run() call.
run_options: RunOptions input to the run() call.
run_metadata: RunMetadata input to the run() call.
The above four arguments are identical to the input arguments to the
run() method of a non-wrapped TensorFlow session.
run_call_count: 1-based count of how many run calls (including this one)
has been invoked.
"""
self.fetches = fetches
self.feed_dict = feed_dict
self.run_options = run_options
self.run_metadata = run_metadata
self.run_call_count = run_call_count
示例7: testPerStepTrace
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def testPerStepTrace(self):
run_options = config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE)
run_metadata = config_pb2.RunMetadata()
with ops.device('/cpu:0'):
with session.Session() as sess:
sess.run(constant_op.constant(1.0))
self.assertTrue(not run_metadata.HasField('step_stats'))
sess.run(constant_op.constant(1.0), run_metadata=run_metadata)
self.assertTrue(not run_metadata.HasField('step_stats'))
sess.run(constant_op.constant(1.0),
options=run_options,
run_metadata=run_metadata)
self.assertTrue(run_metadata.HasField('step_stats'))
self.assertEquals(len(run_metadata.step_stats.dev_stats), 1)
示例8: testRunOptionsRunMetadata
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def testRunOptionsRunMetadata(self):
run_options = config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE)
run_metadata = config_pb2.RunMetadata()
with ops.device('/cpu:0'):
with session.Session() as sess:
# all combinations are valid
sess.run(constant_op.constant(1.0), options=None, run_metadata=None)
sess.run(constant_op.constant(1.0), options=None,
run_metadata=run_metadata)
self.assertTrue(not run_metadata.HasField('step_stats'))
sess.run(constant_op.constant(1.0), options=run_options,
run_metadata=None)
self.assertTrue(not run_metadata.HasField('step_stats'))
sess.run(constant_op.constant(1.0), options=run_options,
run_metadata=run_metadata)
self.assertTrue(run_metadata.HasField('step_stats'))
self.assertEquals(len(run_metadata.step_stats.dev_stats), 1)
示例9: testBuildCostModel
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def testBuildCostModel(self):
run_options = config_pb2.RunOptions()
config = config_pb2.ConfigProto(
allow_soft_placement=True,
graph_options=config_pb2.GraphOptions(build_cost_model=100))
with session.Session(config=config) as sess:
with ops.device('/gpu:0'):
a = array_ops.placeholder(dtypes.float32, shape=[])
b = math_ops.add(a, a)
c = array_ops.identity(b)
d = math_ops.mul(c, c)
for step in xrange(120):
run_metadata = config_pb2.RunMetadata()
sess.run(d, feed_dict={a: 1.0},
options=run_options, run_metadata=run_metadata)
if step == 99:
self.assertTrue(run_metadata.HasField('cost_graph'))
else:
self.assertFalse(run_metadata.HasField('cost_graph'))
示例10: _prepare_cont_call_dump_path_and_run_options
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def _prepare_cont_call_dump_path_and_run_options(self):
"""Prepare the dump path and RunOptions for next cont() call.
Returns:
dump_path: (str) Directory path to which the intermediate tensor will be
dumped.
run_options: (config_pb2.RunOptions) The RunOptions containing the tensor
watch options for this graph.
"""
run_options = config_pb2.RunOptions()
dump_path = self._cont_call_dump_path()
for element_name in self._closure_elements:
if ":" in element_name:
debug_utils.add_debug_tensor_watch(
run_options,
debug_graphs.get_node_name(element_name),
output_slot=debug_graphs.get_output_slot(element_name),
debug_urls=["file://" + dump_path])
return dump_path, run_options
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:22,代码来源:stepper.py
示例11: __init__
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def __init__(self, fetches, feed_dict, run_options, run_metadata,
run_call_count, is_callable_runner=False):
"""Constructor of `OnRunStartRequest`.
Args:
fetches: Fetch targets of the run() call.
feed_dict: The feed dictionary to the run() call.
run_options: RunOptions input to the run() call.
run_metadata: RunMetadata input to the run() call.
The above four arguments are identical to the input arguments to the
run() method of a non-wrapped TensorFlow session.
run_call_count: 1-based count of how many run calls (including this one)
has been invoked.
is_callable_runner: (bool) whether a runner returned by
Session.make_callable is being run.
"""
self.fetches = fetches
self.feed_dict = feed_dict
self.run_options = run_options
self.run_metadata = run_metadata
self.run_call_count = run_call_count
self.is_callable_runner = is_callable_runner
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:24,代码来源:framework.py
示例12: testDebugTrainingDynamicRNNWorks
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def testDebugTrainingDynamicRNNWorks(self):
with session.Session() as sess:
input_size = 3
state_size = 2
time_steps = 4
batch_size = 2
input_values = np.random.randn(time_steps, batch_size, input_size)
sequence_length = np.random.randint(0, time_steps, size=batch_size)
concat_inputs = array_ops.placeholder(
dtypes.float32, shape=(time_steps, batch_size, input_size))
outputs_dynamic, _ = rnn.dynamic_rnn(
_RNNCellForTest(input_size, state_size),
inputs=concat_inputs,
sequence_length=sequence_length,
time_major=True,
dtype=dtypes.float32)
toy_loss = math_ops.reduce_sum(outputs_dynamic * outputs_dynamic)
train_op = gradient_descent.GradientDescentOptimizer(
learning_rate=0.1).minimize(toy_loss, name="train_op")
sess.run(variables.global_variables_initializer())
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph_with_blacklists(
run_options,
sess.graph,
node_name_regex_blacklist="(.*rnn/while/.*|.*TensorArray.*)",
debug_urls=self._debug_urls())
# b/36870549: Nodes with these name patterns need to be excluded from
# tfdbg in order to prevent MSAN warnings of uninitialized Tensors
# under both file:// and grpc:// debug URL schemes.
run_metadata = config_pb2.RunMetadata()
sess.run(train_op, feed_dict={concat_inputs: input_values},
options=run_options, run_metadata=run_metadata)
debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
示例13: _session_run_for_graph_structure_lookup
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def _session_run_for_graph_structure_lookup(self):
with session.Session() as sess:
u_name = "testDumpGraphStructureLookup/u"
v_name = "testDumpGraphStructureLookup/v"
w_name = "testDumpGraphStructureLookup/w"
u_init = constant_op.constant([2.0, 4.0])
u = variables.Variable(u_init, name=u_name)
v = math_ops.add(u, u, name=v_name)
w = math_ops.add(v, v, name=w_name)
u.initializer.run()
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugIdentity"],
debug_urls=self._debug_urls())
run_metadata = config_pb2.RunMetadata()
sess.run(w, options=run_options, run_metadata=run_metadata)
self.assertEqual(self._expected_partition_graph_count,
len(run_metadata.partition_graphs))
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
return u_name, v_name, w_name, dump
示例14: testWatchingOnlyOneOfTwoOutputSlotsDoesNotLeadToCausalityFailure
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def testWatchingOnlyOneOfTwoOutputSlotsDoesNotLeadToCausalityFailure(self):
with session.Session() as sess:
x_name = "oneOfTwoSlots/x"
u_name = "oneOfTwoSlots/u"
v_name = "oneOfTwoSlots/v"
w_name = "oneOfTwoSlots/w"
y_name = "oneOfTwoSlots/y"
x = variables.Variable([1, 3, 3, 7], dtype=dtypes.int32, name=x_name)
sess.run(x.initializer)
unique_x, indices, _ = array_ops.unique_with_counts(x, name=u_name)
v = math_ops.add(unique_x, unique_x, name=v_name)
w = math_ops.add(indices, indices, name=w_name)
y = math_ops.add(w, w, name=y_name)
run_options = config_pb2.RunOptions(output_partition_graphs=True)
# Watch only the first output slot of u, even though it has two output
# slots.
debug_utils.add_debug_tensor_watch(
run_options, u_name, 0, debug_urls=self._debug_urls())
debug_utils.add_debug_tensor_watch(
run_options, w_name, 0, debug_urls=self._debug_urls())
debug_utils.add_debug_tensor_watch(
run_options, y_name, 0, debug_urls=self._debug_urls())
run_metadata = config_pb2.RunMetadata()
sess.run([v, y], options=run_options, run_metadata=run_metadata)
dump = debug_data.DebugDumpDir(
self._dump_root,
partition_graphs=run_metadata.partition_graphs,
validate=True)
self.assertAllClose([1, 3, 7],
dump.get_tensors(u_name, 0, "DebugIdentity")[0])
示例15: testOutputSlotWithoutOutgoingEdgeCanBeWatched
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import RunOptions [as 别名]
def testOutputSlotWithoutOutgoingEdgeCanBeWatched(self):
"""Test watching output slots not attached to any outgoing edges."""
with session.Session() as sess:
u_init_val = np.array([[5.0, 3.0], [-1.0, 0.0]])
u = constant_op.constant(u_init_val, shape=[2, 2], name="u")
# Create a control edge from a node with an output: From u to z.
# Node u will get executed only because of the control edge. The output
# tensor u:0 is not attached to any outgoing edge in the graph. This test
# checks that the debugger can watch such a tensor.
with ops.control_dependencies([u]):
z = control_flow_ops.no_op(name="z")
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph(
run_options,
sess.graph,
debug_ops=["DebugIdentity"],
debug_urls=self._debug_urls())
run_metadata = config_pb2.RunMetadata()
sess.run(z, options=run_options, run_metadata=run_metadata)
dump = debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
# Assert that the DebugIdentity watch on u works properly.
self.assertEqual(1, len(dump.dumped_tensor_data))
datum = dump.dumped_tensor_data[0]
self.assertEqual("u", datum.node_name)
self.assertEqual(0, datum.output_slot)
self.assertEqual("DebugIdentity", datum.debug_op)
self.assertAllClose([[5.0, 3.0], [-1.0, 0.0]], datum.get_tensor())