本文整理汇总了Python中tensorflow.core.protobuf.config_pb2.ConfigProto方法的典型用法代码示例。如果您正苦于以下问题:Python config_pb2.ConfigProto方法的具体用法?Python config_pb2.ConfigProto怎么用?Python config_pb2.ConfigProto使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.core.protobuf.config_pb2
的用法示例。
在下文中一共展示了config_pb2.ConfigProto方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def __init__(self, target='', graph=None, config=None):
"""Creates a new TensorFlow session.
If no `graph` argument is specified when constructing the session,
the default graph will be launched in the session. If you are
using more than one graph (created with `tf.Graph()` in the same
process, you will have to use different sessions for each graph,
but each graph can be used in multiple sessions. In this case, it
is often clearer to pass the graph to be launched explicitly to
the session constructor.
Args:
target: (Optional.) The execution engine to connect to.
Defaults to using an in-process engine. See
@{$distributed$Distributed TensorFlow}
for more examples.
graph: (Optional.) The `Graph` to be launched (described above).
config: (Optional.) A [`ConfigProto`](https://www.tensorflow.org/code/tensorflow/core/protobuf/config.proto)
protocol buffer with configuration options for the session.
"""
super(Session, self).__init__(target, graph, config=config)
# NOTE(mrry): Create these on first `__enter__` to avoid a reference cycle.
self._default_graph_context_manager = None
self._default_session_context_manager = None
示例2: testClearDevices
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def testClearDevices(self):
export_dir = os.path.join(test.get_temp_dir(), "test_clear_devices")
builder = saved_model_builder.SavedModelBuilder(export_dir)
# Specify a device and save a variable.
ops.reset_default_graph()
with session.Session(
target="",
config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
self._init_and_validate_variable(sess, "v", 42)
builder.add_meta_graph_and_variables(
sess, [tag_constants.TRAINING], clear_devices=True)
# Save the SavedModel to disk.
builder.save()
# Restore the graph with a single predefined tag whose variables were saved
# without any device information.
with self.test_session(graph=ops.Graph()) as sess:
loader.load(sess, [tag_constants.TRAINING], export_dir)
self.assertEqual(
42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())
示例3: __init__
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def __init__(self, target='', graph=None, config=None):
"""Creates a new TensorFlow session.
If no `graph` argument is specified when constructing the session,
the default graph will be launched in the session. If you are
using more than one graph (created with `tf.Graph()` in the same
process, you will have to use different sessions for each graph,
but each graph can be used in multiple sessions. In this case, it
is often clearer to pass the graph to be launched explicitly to
the session constructor.
Args:
target: (Optional.) The execution engine to connect to.
Defaults to using an in-process engine. See
[Distributed Tensorflow](https://www.tensorflow.org/how_tos/distributed/index.html)
for more examples.
graph: (Optional.) The `Graph` to be launched (described above).
config: (Optional.) A [`ConfigProto`](https://www.tensorflow.org/code/tensorflow/core/protobuf/config.proto)
protocol buffer with configuration options for the session.
"""
super(Session, self).__init__(target, graph, config=config)
# NOTE(mrry): Create these on first `__enter__` to avoid a reference cycle.
self._default_graph_context_manager = None
self._default_session_context_manager = None
示例4: testLegacyBasic
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def testLegacyBasic(self):
base_path = test.test_src_dir_path(SESSION_BUNDLE_PATH)
ops.reset_default_graph()
sess, meta_graph_def = (
bundle_shim.load_session_bundle_or_saved_model_bundle_from_path(
base_path,
tags=[""],
target="",
config=config_pb2.ConfigProto(device_count={"CPU": 2})))
self.assertTrue(sess)
asset_path = os.path.join(base_path, constants.ASSETS_DIRECTORY)
with sess.as_default():
path1, path2 = sess.run(["filename1:0", "filename2:0"])
self.assertEqual(
compat.as_bytes(os.path.join(asset_path, "hello1.txt")), path1)
self.assertEqual(
compat.as_bytes(os.path.join(asset_path, "hello2.txt")), path2)
collection_def = meta_graph_def.collection_def
signatures_any = collection_def[constants.SIGNATURES_KEY].any_list.value
self.assertEqual(len(signatures_any), 1)
示例5: testSavedModelBasic
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def testSavedModelBasic(self):
base_path = test.test_src_dir_path(SAVED_MODEL_PATH)
ops.reset_default_graph()
sess, meta_graph_def = (
bundle_shim.load_session_bundle_or_saved_model_bundle_from_path(
base_path,
tags=[tag_constants.SERVING],
target="",
config=config_pb2.ConfigProto(device_count={"CPU": 2})))
self.assertTrue(sess)
# Check basic signature def property.
signature_def = meta_graph_def.signature_def
self.assertEqual(len(signature_def), 2)
self.assertEqual(
signature_def[signature_constants.REGRESS_METHOD_NAME].method_name,
signature_constants.REGRESS_METHOD_NAME)
signature = signature_def["tensorflow/serving/regress"]
asset_path = os.path.join(base_path, saved_model_constants.ASSETS_DIRECTORY)
with sess.as_default():
output1 = sess.run(["filename_tensor:0"])
self.assertEqual(["foo.txt"], output1)
示例6: testClearDevices
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def testClearDevices(self):
export_dir = os.path.join(tf.test.get_temp_dir(), "test_clear_devices")
builder = saved_model_builder.SavedModelBuilder(export_dir)
# Specify a device and save a variable.
tf.reset_default_graph()
with tf.Session(
target="",
config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess:
with sess.graph.device("/cpu:0"):
self._init_and_validate_variable(sess, "v", 42)
builder.add_meta_graph_and_variables(
sess, [tag_constants.TRAINING], clear_devices=True)
# Save the SavedModel to disk.
builder.save()
# Restore the graph with a single predefined tag whose variables were saved
# without any device information.
with self.test_session(graph=tf.Graph()) as sess:
loader.load(sess, [tag_constants.TRAINING], export_dir)
self.assertEqual(
42, tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)[0].eval())
示例7: testBuildCostModel
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def testBuildCostModel(self):
run_options = config_pb2.RunOptions()
config = config_pb2.ConfigProto(
allow_soft_placement=True,
graph_options=config_pb2.GraphOptions(build_cost_model=100))
with session.Session(config=config) as sess:
with ops.device('/gpu:0'):
a = array_ops.placeholder(dtypes.float32, shape=[])
b = math_ops.add(a, a)
c = array_ops.identity(b)
d = math_ops.mul(c, c)
for step in xrange(120):
run_metadata = config_pb2.RunMetadata()
sess.run(d, feed_dict={a: 1.0},
options=run_options, run_metadata=run_metadata)
if step == 99:
self.assertTrue(run_metadata.HasField('cost_graph'))
else:
self.assertFalse(run_metadata.HasField('cost_graph'))
示例8: optimize_graph
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def optimize_graph(graph: tf.Graph, level=None) -> GraphDef:
"""Optimise a tensorflow graph for inference after modification
This function optimises the given graph for inference after the graph
may have been modified to replace known, but unsupported operations.
Optimisation might use multiple passes and aim at CPUs or GPUs.
Args:
graph: Tensorflow v1 graph (or wrapped v2 function) to be optimised
level: optional optimisation level; currently unsupported
Returns:
Optimised ``GraphDef`` message for inference or format conversion
"""
inputs = get_input_nodes(graph)
outputs = get_output_nodes(graph)
signature_def = _build_signature_def(graph, inputs, outputs)
_mark_outputs_as_train_op(graph, signature_def)
config = ConfigProto()
_set_optimization_options(config, [
'debug_stripper', 'remap', 'constfold', 'arithmetic', 'dependency'
])
optimised_graph = _run_tf_optimizer(config, graph, signature_def)
optimised_graph = _remove_unused_control_flow_inputs(optimised_graph)
return optimised_graph
示例9: test_replace_with_allowed_properties
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def test_replace_with_allowed_properties(self):
session_config = config_pb2.ConfigProto(allow_soft_placement=True)
device_fn = lambda op: '/cpu:0'
config = run_config_lib.RunConfig().replace(
tf_random_seed=11,
save_summary_steps=12,
save_checkpoints_secs=14,
session_config=session_config,
keep_checkpoint_max=16,
keep_checkpoint_every_n_hours=17,
device_fn=device_fn,
session_creation_timeout_secs=18)
self.assertEqual(11, config.tf_random_seed)
self.assertEqual(12, config.save_summary_steps)
self.assertEqual(14, config.save_checkpoints_secs)
self.assertEqual(session_config, config.session_config)
self.assertEqual(16, config.keep_checkpoint_max)
self.assertEqual(17, config.keep_checkpoint_every_n_hours)
self.assertEqual(device_fn, config.device_fn)
self.assertEqual(18, config.session_creation_timeout_secs)
示例10: test_init_with_allowed_properties
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def test_init_with_allowed_properties(self):
session_config = config_pb2.ConfigProto(allow_soft_placement=True)
device_fn = lambda op: '/cpu:0'
config = run_config_lib.RunConfig(
tf_random_seed=11,
save_summary_steps=12,
save_checkpoints_secs=14,
session_config=session_config,
keep_checkpoint_max=16,
keep_checkpoint_every_n_hours=17,
device_fn=device_fn,
experimental_max_worker_delay_secs=10)
self.assertEqual(11, config.tf_random_seed)
self.assertEqual(12, config.save_summary_steps)
self.assertEqual(14, config.save_checkpoints_secs)
self.assertEqual(session_config, config.session_config)
self.assertEqual(16, config.keep_checkpoint_max)
self.assertEqual(17, config.keep_checkpoint_every_n_hours)
self.assertEqual(device_fn, config.device_fn)
self.assertEqual(10, config.experimental_max_worker_delay_secs)
示例11: test_linear_model_mismatched_dense_values
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def test_linear_model_mismatched_dense_values(self):
column = fc.weighted_categorical_column(
categorical_column=fc.categorical_column_with_identity(
key='ids', num_buckets=3),
weight_feature_key='values')
with ops.Graph().as_default():
model = linear.LinearModel((column,), sparse_combiner='mean')
predictions = model({
'ids':
sparse_tensor.SparseTensorValue(
indices=((0, 0), (1, 0), (1, 1)),
values=(0, 2, 1),
dense_shape=(2, 2)),
'values': ((.5,), (1.,))
})
# Disabling the constant folding optimizer here since it changes the
# error message differently on CPU and GPU.
config = config_pb2.ConfigProto()
config.graph_options.rewrite_options.constant_folding = (
rewriter_config_pb2.RewriterConfig.OFF)
with _initialized_session(config):
with self.assertRaisesRegexp(errors.OpError, 'Incompatible shapes'):
self.evaluate(predictions)
示例12: test_gpu_config
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def test_gpu_config(self):
with tf.Graph().as_default():
keras_model, (_, _), (_, _), _, _ = get_resource_for_simple_model()
keras_model.compile(
loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['mse', keras.metrics.CategoricalAccuracy()])
gpu_options = config_pb2.GPUOptions(per_process_gpu_memory_fraction=0.3)
sess_config = config_pb2.ConfigProto(gpu_options=gpu_options)
self._config._session_config = sess_config
keras_lib.model_to_estimator(keras_model=keras_model, config=self._config)
self.assertEqual(
keras.backend.get_session(
)._config.gpu_options.per_process_gpu_memory_fraction,
gpu_options.per_process_gpu_memory_fraction)
示例13: _validate_properties
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def _validate_properties(run_config):
"""Validates the properties."""
def _validate(property_name, cond, message):
property_value = getattr(run_config, property_name)
if property_value is not None and not cond(property_value):
raise ValueError(message)
_validate('model_dir', lambda dir: dir,
message='model_dir should be non-empty')
_validate('save_summary_steps', lambda steps: steps >= 0,
message='save_summary_steps should be >= 0')
_validate('save_checkpoints_steps', lambda steps: steps >= 0,
message='save_checkpoints_steps should be >= 0')
_validate('save_checkpoints_secs', lambda secs: secs >= 0,
message='save_checkpoints_secs should be >= 0')
_validate('session_config',
lambda sc: isinstance(sc, config_pb2.ConfigProto),
message='session_config must be instance of ConfigProto')
_validate('keep_checkpoint_max', lambda keep_max: keep_max >= 0,
message='keep_checkpoint_max should be >= 0')
_validate('keep_checkpoint_every_n_hours', lambda keep_hours: keep_hours > 0,
message='keep_checkpoint_every_n_hours should be > 0')
_validate('tf_random_seed', lambda seed: isinstance(seed, six.integer_types),
message='tf_random_seed must be integer.')
示例14: get_session
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def get_session():
"""Returns the TF session to be used by the backend.
If a default TensorFlow session is available, we will return it.
Else, we will return the global Keras session.
If no global Keras session exists at this point:
we will create a new global session.
Note that you can manually set the global session
via `K.set_session(sess)`.
Returns:
A TensorFlow session.
"""
global _SESSION
if ops.get_default_session() is not None:
session = ops.get_default_session()
else:
if _SESSION is None:
if not os.environ.get('OMP_NUM_THREADS'):
config = config_pb2.ConfigProto(allow_soft_placement=True)
else:
num_thread = int(os.environ.get('OMP_NUM_THREADS'))
config = config_pb2.ConfigProto(
intra_op_parallelism_threads=num_thread, allow_soft_placement=True)
_SESSION = session_module.Session(config=config)
session = _SESSION
if not _MANUAL_VAR_INIT:
with session.graph.as_default():
_initialize_variables()
return session
示例15: testBasic
# 需要导入模块: from tensorflow.core.protobuf import config_pb2 [as 别名]
# 或者: from tensorflow.core.protobuf.config_pb2 import ConfigProto [as 别名]
def testBasic(self):
base_path = test.test_src_dir_path(SESSION_BUNDLE_PATH)
ops.reset_default_graph()
sess, meta_graph_def = session_bundle.load_session_bundle_from_path(
base_path,
target="",
config=config_pb2.ConfigProto(device_count={"CPU": 2}))
self.assertTrue(sess)
asset_path = os.path.join(base_path, constants.ASSETS_DIRECTORY)
with sess.as_default():
path1, path2 = sess.run(["filename1:0", "filename2:0"])
self.assertEqual(
compat.as_bytes(os.path.join(asset_path, "hello1.txt")), path1)
self.assertEqual(
compat.as_bytes(os.path.join(asset_path, "hello2.txt")), path2)
collection_def = meta_graph_def.collection_def
signatures_any = collection_def[constants.SIGNATURES_KEY].any_list.value
self.assertEquals(len(signatures_any), 1)
signatures = manifest_pb2.Signatures()
signatures_any[0].Unpack(signatures)
self._checkRegressionSignature(signatures, sess)
self._checkNamedSignatures(signatures, sess)