本文整理汇总了Python中tensorflow.core.example.feature_pb2.FloatList方法的典型用法代码示例。如果您正苦于以下问题:Python feature_pb2.FloatList方法的具体用法?Python feature_pb2.FloatList怎么用?Python feature_pb2.FloatList使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.core.example.feature_pb2
的用法示例。
在下文中一共展示了feature_pb2.FloatList方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_tf_record
# 需要导入模块: from tensorflow.core.example import feature_pb2 [as 别名]
# 或者: from tensorflow.core.example.feature_pb2 import FloatList [as 别名]
def create_tf_record(self):
path = os.path.join(self.get_temp_dir(), 'tfrecord')
writer = tf.python_io.TFRecordWriter(path)
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
with self.test_session():
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval()
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image/encoded': feature_pb2.Feature(
bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])),
'image/format': feature_pb2.Feature(
bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])),
'image/object/bbox/xmin': feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[0.0])),
'image/object/bbox/xmax': feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[1.0])),
'image/object/bbox/ymin': feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[0.0])),
'image/object/bbox/ymax': feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[1.0])),
'image/object/class/label': feature_pb2.Feature(
int64_list=feature_pb2.Int64List(value=[2])),
}))
writer.write(example.SerializeToString())
writer.close()
return path
示例2: _EncodedFloatFeature
# 需要导入模块: from tensorflow.core.example import feature_pb2 [as 别名]
# 或者: from tensorflow.core.example.feature_pb2 import FloatList [as 别名]
def _EncodedFloatFeature(self, ndarray):
return feature_pb2.Feature(float_list=feature_pb2.FloatList(
value=ndarray.flatten().tolist()))
示例3: create_tf_record
# 需要导入模块: from tensorflow.core.example import feature_pb2 [as 别名]
# 或者: from tensorflow.core.example.feature_pb2 import FloatList [as 别名]
def create_tf_record(self):
path = os.path.join(self.get_temp_dir(), 'tfrecord')
writer = tf.python_io.TFRecordWriter(path)
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
flat_mask = (4 * 5) * [1.0]
with self.test_session():
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval()
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image/encoded': feature_pb2.Feature(
bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])),
'image/format': feature_pb2.Feature(
bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])),
'image/height': feature_pb2.Feature(
int64_list=feature_pb2.Int64List(value=[4])),
'image/width': feature_pb2.Feature(
int64_list=feature_pb2.Int64List(value=[5])),
'image/object/bbox/xmin': feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[0.0])),
'image/object/bbox/xmax': feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[1.0])),
'image/object/bbox/ymin': feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[0.0])),
'image/object/bbox/ymax': feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[1.0])),
'image/object/class/label': feature_pb2.Feature(
int64_list=feature_pb2.Int64List(value=[2])),
'image/object/mask': feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=flat_mask)),
}))
writer.write(example.SerializeToString())
writer.close()
return path
示例4: create_tf_record
# 需要导入模块: from tensorflow.core.example import feature_pb2 [as 别名]
# 或者: from tensorflow.core.example.feature_pb2 import FloatList [as 别名]
def create_tf_record(self):
path = os.path.join(self.get_temp_dir(), 'tfrecord')
writer = tf.python_io.TFRecordWriter(path)
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
flat_mask = (4 * 5) * [1.0]
with self.test_session():
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval()
example = example_pb2.Example(
features=feature_pb2.Features(
feature={
'image/encoded':
feature_pb2.Feature(
bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])),
'image/format':
feature_pb2.Feature(
bytes_list=feature_pb2.BytesList(
value=['jpeg'.encode('utf-8')])),
'image/height':
feature_pb2.Feature(
int64_list=feature_pb2.Int64List(value=[4])),
'image/width':
feature_pb2.Feature(
int64_list=feature_pb2.Int64List(value=[5])),
'image/object/bbox/xmin':
feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[0.0])),
'image/object/bbox/xmax':
feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[1.0])),
'image/object/bbox/ymin':
feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[0.0])),
'image/object/bbox/ymax':
feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=[1.0])),
'image/object/class/label':
feature_pb2.Feature(
int64_list=feature_pb2.Int64List(value=[2])),
'image/object/mask':
feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=flat_mask)),
}))
writer.write(example.SerializeToString())
writer.close()
return path
示例5: create_tf_record
# 需要导入模块: from tensorflow.core.example import feature_pb2 [as 别名]
# 或者: from tensorflow.core.example.feature_pb2 import FloatList [as 别名]
def create_tf_record(self, has_additional_channels=False):
path = os.path.join(self.get_temp_dir(), 'tfrecord')
writer = tf.python_io.TFRecordWriter(path)
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
additional_channels_tensor = np.random.randint(
255, size=(4, 5, 1)).astype(np.uint8)
flat_mask = (4 * 5) * [1.0]
with self.test_session():
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval()
encoded_additional_channels_jpeg = tf.image.encode_jpeg(
tf.constant(additional_channels_tensor)).eval()
features = {
'image/encoded':
feature_pb2.Feature(
bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])),
'image/format':
feature_pb2.Feature(
bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])
),
'image/height':
feature_pb2.Feature(int64_list=feature_pb2.Int64List(value=[4])),
'image/width':
feature_pb2.Feature(int64_list=feature_pb2.Int64List(value=[5])),
'image/object/bbox/xmin':
feature_pb2.Feature(float_list=feature_pb2.FloatList(value=[0.0])),
'image/object/bbox/xmax':
feature_pb2.Feature(float_list=feature_pb2.FloatList(value=[1.0])),
'image/object/bbox/ymin':
feature_pb2.Feature(float_list=feature_pb2.FloatList(value=[0.0])),
'image/object/bbox/ymax':
feature_pb2.Feature(float_list=feature_pb2.FloatList(value=[1.0])),
'image/object/class/label':
feature_pb2.Feature(int64_list=feature_pb2.Int64List(value=[2])),
'image/object/mask':
feature_pb2.Feature(
float_list=feature_pb2.FloatList(value=flat_mask)),
}
if has_additional_channels:
features['image/additional_channels/encoded'] = feature_pb2.Feature(
bytes_list=feature_pb2.BytesList(
value=[encoded_additional_channels_jpeg] * 2))
example = example_pb2.Example(
features=feature_pb2.Features(feature=features))
writer.write(example.SerializeToString())
writer.close()
return path