本文整理汇总了Python中tensorflow.convert_to_tensor方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.convert_to_tensor方法的具体用法?Python tensorflow.convert_to_tensor怎么用?Python tensorflow.convert_to_tensor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.convert_to_tensor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _aspect_preserving_resize
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def _aspect_preserving_resize(image, smallest_side):
"""Resize images preserving the original aspect ratio.
Args:
image: A 3-D image `Tensor`.
smallest_side: A python integer or scalar `Tensor` indicating the size of
the smallest side after resize.
Returns:
resized_image: A 3-D tensor containing the resized image.
"""
smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32)
shape = tf.shape(image)
height = shape[0]
width = shape[1]
new_height, new_width = _smallest_size_at_least(height, width, smallest_side)
image = tf.expand_dims(image, 0)
resized_image = tf.image.resize_bilinear(image, [new_height, new_width],
align_corners=False)
resized_image = tf.squeeze(resized_image)
resized_image.set_shape([None, None, 3])
return resized_image
示例2: stp_transformation
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def stp_transformation(prev_image, stp_input, num_masks):
"""Apply spatial transformer predictor (STP) to previous image.
Args:
prev_image: previous image to be transformed.
stp_input: hidden layer to be used for computing STN parameters.
num_masks: number of masks and hence the number of STP transformations.
Returns:
List of images transformed by the predicted STP parameters.
"""
# Only import spatial transformer if needed.
from spatial_transformer import transformer
identity_params = tf.convert_to_tensor(
np.array([1.0, 0.0, 0.0, 0.0, 1.0, 0.0], np.float32))
transformed = []
for i in range(num_masks - 1):
params = slim.layers.fully_connected(
stp_input, 6, scope='stp_params' + str(i),
activation_fn=None) + identity_params
transformed.append(transformer(prev_image, params))
return transformed
示例3: GenerateBinomialTable
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def GenerateBinomialTable(m):
"""Generate binomial table.
Args:
m: the size of the table.
Returns:
A two dimensional array T where T[i][j] = (i choose j),
for 0<= i, j <=m.
"""
table = numpy.zeros((m + 1, m + 1), dtype=numpy.float64)
for i in range(m + 1):
table[i, 0] = 1
for i in range(1, m + 1):
for j in range(1, m + 1):
v = table[i - 1, j] + table[i - 1, j -1]
assert not math.isnan(v) and not math.isinf(v)
table[i, j] = v
return tf.convert_to_tensor(table)
示例4: l1_regularizer
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def l1_regularizer(weight=1.0, scope=None):
"""Define a L1 regularizer.
Args:
weight: scale the loss by this factor.
scope: Optional scope for name_scope.
Returns:
a regularizer function.
"""
def regularizer(tensor):
with tf.name_scope(scope, 'L1Regularizer', [tensor]):
l1_weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='weight')
return tf.multiply(l1_weight, tf.reduce_sum(tf.abs(tensor)), name='value')
return regularizer
示例5: l2_regularizer
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def l2_regularizer(weight=1.0, scope=None):
"""Define a L2 regularizer.
Args:
weight: scale the loss by this factor.
scope: Optional scope for name_scope.
Returns:
a regularizer function.
"""
def regularizer(tensor):
with tf.name_scope(scope, 'L2Regularizer', [tensor]):
l2_weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='weight')
return tf.multiply(l2_weight, tf.nn.l2_loss(tensor), name='value')
return regularizer
示例6: l1_l2_regularizer
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def l1_l2_regularizer(weight_l1=1.0, weight_l2=1.0, scope=None):
"""Define a L1L2 regularizer.
Args:
weight_l1: scale the L1 loss by this factor.
weight_l2: scale the L2 loss by this factor.
scope: Optional scope for name_scope.
Returns:
a regularizer function.
"""
def regularizer(tensor):
with tf.name_scope(scope, 'L1L2Regularizer', [tensor]):
weight_l1_t = tf.convert_to_tensor(weight_l1,
dtype=tensor.dtype.base_dtype,
name='weight_l1')
weight_l2_t = tf.convert_to_tensor(weight_l2,
dtype=tensor.dtype.base_dtype,
name='weight_l2')
reg_l1 = tf.multiply(weight_l1_t, tf.reduce_sum(tf.abs(tensor)),
name='value_l1')
reg_l2 = tf.multiply(weight_l2_t, tf.nn.l2_loss(tensor),
name='value_l2')
return tf.add(reg_l1, reg_l2, name='value')
return regularizer
示例7: l1_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def l1_loss(tensor, weight=1.0, scope=None):
"""Define a L1Loss, useful for regularize, i.e. lasso.
Args:
tensor: tensor to regularize.
weight: scale the loss by this factor.
scope: Optional scope for name_scope.
Returns:
the L1 loss op.
"""
with tf.name_scope(scope, 'L1Loss', [tensor]):
weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='loss_weight')
loss = tf.multiply(weight, tf.reduce_sum(tf.abs(tensor)), name='value')
tf.add_to_collection(LOSSES_COLLECTION, loss)
return loss
示例8: l2_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def l2_loss(tensor, weight=1.0, scope=None):
"""Define a L2Loss, useful for regularize, i.e. weight decay.
Args:
tensor: tensor to regularize.
weight: an optional weight to modulate the loss.
scope: Optional scope for name_scope.
Returns:
the L2 loss op.
"""
with tf.name_scope(scope, 'L2Loss', [tensor]):
weight = tf.convert_to_tensor(weight,
dtype=tensor.dtype.base_dtype,
name='loss_weight')
loss = tf.multiply(weight, tf.nn.l2_loss(tensor), name='value')
tf.add_to_collection(LOSSES_COLLECTION, loss)
return loss
示例9: testDecodeJpegImage
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def testDecodeJpegImage(self):
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
decoded_jpeg = self._DecodeImage(encoded_jpeg)
example = tf.train.Example(features=tf.train.Features(feature={
'image/encoded': self._BytesFeature(encoded_jpeg),
'image/format': self._BytesFeature('jpeg'),
'image/source_id': self._BytesFeature('image_id'),
})).SerializeToString()
example_decoder = tf_example_decoder.TfExampleDecoder()
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
self.assertAllEqual((tensor_dict[fields.InputDataFields.image].
get_shape().as_list()), [None, None, 3])
with self.test_session() as sess:
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual(decoded_jpeg, tensor_dict[fields.InputDataFields.image])
self.assertEqual('image_id', tensor_dict[fields.InputDataFields.source_id])
示例10: testDecodeImageKeyAndFilename
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def testDecodeImageKeyAndFilename(self):
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
example = tf.train.Example(features=tf.train.Features(feature={
'image/encoded': self._BytesFeature(encoded_jpeg),
'image/key/sha256': self._BytesFeature('abc'),
'image/filename': self._BytesFeature('filename')
})).SerializeToString()
example_decoder = tf_example_decoder.TfExampleDecoder()
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
with self.test_session() as sess:
tensor_dict = sess.run(tensor_dict)
self.assertEqual('abc', tensor_dict[fields.InputDataFields.key])
self.assertEqual('filename', tensor_dict[fields.InputDataFields.filename])
示例11: testDecodePngImage
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def testDecodePngImage(self):
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
encoded_png = self._EncodeImage(image_tensor, encoding_type='png')
decoded_png = self._DecodeImage(encoded_png, encoding_type='png')
example = tf.train.Example(features=tf.train.Features(feature={
'image/encoded': self._BytesFeature(encoded_png),
'image/format': self._BytesFeature('png'),
'image/source_id': self._BytesFeature('image_id')
})).SerializeToString()
example_decoder = tf_example_decoder.TfExampleDecoder()
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
self.assertAllEqual((tensor_dict[fields.InputDataFields.image].
get_shape().as_list()), [None, None, 3])
with self.test_session() as sess:
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual(decoded_png, tensor_dict[fields.InputDataFields.image])
self.assertEqual('image_id', tensor_dict[fields.InputDataFields.source_id])
示例12: testDecodeObjectLabel
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def testDecodeObjectLabel(self):
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
bbox_classes = [0, 1]
example = tf.train.Example(features=tf.train.Features(feature={
'image/encoded': self._BytesFeature(encoded_jpeg),
'image/format': self._BytesFeature('jpeg'),
'image/object/class/label': self._Int64Feature(bbox_classes),
})).SerializeToString()
example_decoder = tf_example_decoder.TfExampleDecoder()
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
self.assertAllEqual((tensor_dict[
fields.InputDataFields.groundtruth_classes].get_shape().as_list()),
[None])
with self.test_session() as sess:
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual(bbox_classes,
tensor_dict[fields.InputDataFields.groundtruth_classes])
示例13: testDecodeObjectIsCrowd
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def testDecodeObjectIsCrowd(self):
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
object_is_crowd = [0, 1]
example = tf.train.Example(features=tf.train.Features(feature={
'image/encoded': self._BytesFeature(encoded_jpeg),
'image/format': self._BytesFeature('jpeg'),
'image/object/is_crowd': self._Int64Feature(object_is_crowd),
})).SerializeToString()
example_decoder = tf_example_decoder.TfExampleDecoder()
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
self.assertAllEqual((tensor_dict[
fields.InputDataFields.groundtruth_is_crowd].get_shape().as_list()),
[None])
with self.test_session() as sess:
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual([bool(item) for item in object_is_crowd],
tensor_dict[
fields.InputDataFields.groundtruth_is_crowd])
示例14: testDecodeObjectDifficult
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def testDecodeObjectDifficult(self):
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
encoded_jpeg = self._EncodeImage(image_tensor)
object_difficult = [0, 1]
example = tf.train.Example(features=tf.train.Features(feature={
'image/encoded': self._BytesFeature(encoded_jpeg),
'image/format': self._BytesFeature('jpeg'),
'image/object/difficult': self._Int64Feature(object_difficult),
})).SerializeToString()
example_decoder = tf_example_decoder.TfExampleDecoder()
tensor_dict = example_decoder.decode(tf.convert_to_tensor(example))
self.assertAllEqual((tensor_dict[
fields.InputDataFields.groundtruth_difficult].get_shape().as_list()),
[None])
with self.test_session() as sess:
tensor_dict = sess.run(tensor_dict)
self.assertAllEqual([bool(item) for item in object_difficult],
tensor_dict[
fields.InputDataFields.groundtruth_difficult])
示例15: test_normalized_to_image_coordinates
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import convert_to_tensor [as 别名]
def test_normalized_to_image_coordinates(self):
normalized_boxes = tf.placeholder(tf.float32, shape=(None, 1, 4))
normalized_boxes_np = np.array([[[0.0, 0.0, 1.0, 1.0]],
[[0.5, 0.5, 1.0, 1.0]]])
image_shape = tf.convert_to_tensor([1, 4, 4, 3], dtype=tf.int32)
absolute_boxes = ops.normalized_to_image_coordinates(normalized_boxes,
image_shape,
parallel_iterations=2)
expected_boxes = np.array([[[0, 0, 4, 4]],
[[2, 2, 4, 4]]])
with self.test_session() as sess:
absolute_boxes = sess.run(absolute_boxes,
feed_dict={normalized_boxes:
normalized_boxes_np})
self.assertAllEqual(absolute_boxes, expected_boxes)