当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.control_dependencies方法代码示例

本文整理汇总了Python中tensorflow.control_dependencies方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.control_dependencies方法的具体用法?Python tensorflow.control_dependencies怎么用?Python tensorflow.control_dependencies使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.control_dependencies方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: init_uninited_vars

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def init_uninited_vars(vars=None):
    if vars is None: vars = tf.global_variables()
    test_vars = []; test_ops = []
    with tf.control_dependencies(None): # ignore surrounding control_dependencies
        for var in vars:
            assert is_tf_expression(var)
            try:
                tf.get_default_graph().get_tensor_by_name(var.name.replace(':0', '/IsVariableInitialized:0'))
            except KeyError:
                # Op does not exist => variable may be uninitialized.
                test_vars.append(var)
                with absolute_name_scope(var.name.split(':')[0]):
                    test_ops.append(tf.is_variable_initialized(var))
    init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
    run([var.initializer for var in init_vars])

#----------------------------------------------------------------------------
# Set the values of given tf.Variables.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
#   tfutil.run([tf.assign(var, value) for var, value in var_to_value_dict.items()] 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:22,代码来源:tfutil.py

示例2: autosummary

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def autosummary(name, value):
    id = name.replace('/', '_')
    if is_tf_expression(value):
        with tf.name_scope('summary_' + id), tf.device(value.device):
            update_op = _create_autosummary_var(name, value)
            with tf.control_dependencies([update_op]):
                return tf.identity(value)
    else: # python scalar or numpy array
        if name not in _autosummary_immediate:
            with absolute_name_scope('Autosummary/' + id), tf.device(None), tf.control_dependencies(None):
                update_value = tf.placeholder(tf.float32)
                update_op = _create_autosummary_var(name, update_value)
                _autosummary_immediate[name] = update_op, update_value
        update_op, update_value = _autosummary_immediate[name]
        run(update_op, {update_value: np.float32(value)})
        return value

# Create the necessary ops to include autosummaries in TensorBoard report.
# Note: This should be done only once per graph. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:21,代码来源:tfutil.py

示例3: finalize_autosummaries

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def finalize_autosummaries():
    global _autosummary_finalized
    if _autosummary_finalized:
        return
    _autosummary_finalized = True
    init_uninited_vars([var for vars in _autosummary_vars.values() for var in vars])
    with tf.device(None), tf.control_dependencies(None):
        for name, vars in _autosummary_vars.items():
            id = name.replace('/', '_')
            with absolute_name_scope('Autosummary/' + id):
                sum = tf.add_n(vars)
                avg = sum[0] / sum[1]
                with tf.control_dependencies([avg]): # read before resetting
                    reset_ops = [tf.assign(var, tf.zeros(2)) for var in vars]
                    with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
                        tf.summary.scalar(name, avg)

# Internal helper for creating autosummary accumulators. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:20,代码来源:tfutil.py

示例4: _create_autosummary_var

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def _create_autosummary_var(name, value_expr):
    assert not _autosummary_finalized
    v = tf.cast(value_expr, tf.float32)
    if v.shape.ndims is 0:
        v = [v, np.float32(1.0)]
    elif v.shape.ndims is 1:
        v = [tf.reduce_sum(v), tf.cast(tf.shape(v)[0], tf.float32)]
    else:
        v = [tf.reduce_sum(v), tf.reduce_prod(tf.cast(tf.shape(v), tf.float32))]
    v = tf.cond(tf.is_finite(v[0]), lambda: tf.stack(v), lambda: tf.zeros(2))
    with tf.control_dependencies(None):
        var = tf.Variable(tf.zeros(2)) # [numerator, denominator]
    update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
    if name in _autosummary_vars:
        _autosummary_vars[name].append(var)
    else:
        _autosummary_vars[name] = [var]
    return update_op

#----------------------------------------------------------------------------
# Call filewriter.add_summary() with all summaries in the default graph,
# automatically finalizing and merging them on the first call. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:24,代码来源:tfutil.py

示例5: _lm_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def _lm_loss(self,
               inputs,
               emb_key='lm_embedded',
               lstm_layer='lstm',
               lm_loss_layer='lm_loss',
               loss_name='lm_loss',
               compute_loss=True):
    embedded = self.layers['embedding'](inputs.tokens)
    self.tensors[emb_key] = embedded
    lstm_out, next_state = self.layers[lstm_layer](embedded, inputs.state,
                                                   inputs.length)
    if compute_loss:
      loss = self.layers[lm_loss_layer](
          [lstm_out, inputs.labels, inputs.weights])
      with tf.control_dependencies([inputs.save_state(next_state)]):
        loss = tf.identity(loss)
        tf.summary.scalar(loss_name, loss)

      return loss 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:21,代码来源:graphs.py

示例6: central_crop

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def central_crop(image, crop_size):
  """Returns a central crop for the specified size of an image.

  Args:
    image: A tensor with shape [height, width, channels]
    crop_size: A tuple (crop_width, crop_height)

  Returns:
    A tensor of shape [crop_height, crop_width, channels].
  """
  with tf.variable_scope('CentralCrop'):
    target_width, target_height = crop_size
    image_height, image_width = tf.shape(image)[0], tf.shape(image)[1]
    assert_op1 = tf.Assert(
        tf.greater_equal(image_height, target_height),
        ['image_height < target_height', image_height, target_height])
    assert_op2 = tf.Assert(
        tf.greater_equal(image_width, target_width),
        ['image_width < target_width', image_width, target_width])
    with tf.control_dependencies([assert_op1, assert_op2]):
      offset_width = (image_width - target_width) / 2
      offset_height = (image_height - target_height) / 2
      return tf.image.crop_to_bounding_box(image, offset_height, offset_width,
                                           target_height, target_width) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:26,代码来源:data_provider.py

示例7: make_update_op

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def make_update_op(self, upd_idxs, upd_keys, upd_vals,
                     batch_size, use_recent_idx, intended_output):
    """Function that creates all the update ops."""
    mem_age_incr = self.mem_age.assign_add(tf.ones([self.memory_size],
                                                   dtype=tf.float32))
    with tf.control_dependencies([mem_age_incr]):
      mem_age_upd = tf.scatter_update(
          self.mem_age, upd_idxs, tf.zeros([batch_size], dtype=tf.float32))

    mem_key_upd = tf.scatter_update(
        self.mem_keys, upd_idxs, upd_keys)
    mem_val_upd = tf.scatter_update(
        self.mem_vals, upd_idxs, upd_vals)

    if use_recent_idx:
      recent_idx_upd = tf.scatter_update(
          self.recent_idx, intended_output, upd_idxs)
    else:
      recent_idx_upd = tf.group()

    return tf.group(mem_age_upd, mem_key_upd, mem_val_upd, recent_idx_upd) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:23,代码来源:memory.py

示例8: build_structured_training

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def build_structured_training(self, state, network_states):
    """Builds a beam search based training loop for this component.

    The default implementation builds a dummy graph and raises a
    TensorFlow runtime exception to indicate that structured training
    is not implemented.

    Args:
      state: MasterState from the 'AdvanceMaster' op that advances the
        underlying master to this component.
      network_states: dictionary of component NetworkState objects.

    Returns:
      (handle, cost, correct, total) -- These are TF ops corresponding
      to the final handle after unrolling, the total cost, and the
      total number of actions. Since the number of correctly predicted
      actions is not applicable in the structured training setting, a
      dummy value should returned.
    """
    del network_states  # Unused.
    with tf.control_dependencies([tf.Assert(False, ['Not implemented.'])]):
      handle = tf.identity(state.handle)
    cost = tf.constant(0.)
    correct, total = tf.constant(0), tf.constant(0)
    return handle, cost, correct, total 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:27,代码来源:component.py

示例9: _define_experience

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def _define_experience(self, observ, action, reward):
    """Implement the branch of experience() entered during training."""
    update_filters = tf.summary.merge([
        self._observ_filter.update(observ),
        self._reward_filter.update(reward)])
    with tf.control_dependencies([update_filters]):
      if self._config.train_on_agent_action:
        # NOTE: Doesn't seem to change much.
        action = self._last_action
      batch = observ, action, self._last_mean, self._last_logstd, reward
      append = self._episodes.append(batch, tf.range(len(self._batch_env)))
    with tf.control_dependencies([append]):
      norm_observ = self._observ_filter.transform(observ)
      norm_reward = tf.reduce_mean(self._reward_filter.transform(reward))
      # pylint: disable=g-long-lambda
      summary = tf.cond(self._should_log, lambda: tf.summary.merge([
          update_filters,
          self._observ_filter.summary(),
          self._reward_filter.summary(),
          tf.summary.scalar('memory_size', self._memory_index),
          tf.summary.histogram('normalized_observ', norm_observ),
          tf.summary.histogram('action', self._last_action),
          tf.summary.scalar('normalized_reward', norm_reward)]), str)
      return summary 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:26,代码来源:algorithm.py

示例10: _update_value_step

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def _update_value_step(self, observ, reward, length):
    """Compute the current value loss and perform a gradient update step.

    Args:
      observ: Sequences of observations.
      reward: Sequences of reward.
      length: Batch of sequence lengths.

    Returns:
      Tuple of loss tensor and summary tensor.
    """
    loss, summary = self._value_loss(observ, reward, length)
    gradients, variables = (
        zip(*self._value_optimizer.compute_gradients(loss)))
    optimize = self._value_optimizer.apply_gradients(
        zip(gradients, variables))
    summary = tf.summary.merge([
        summary,
        tf.summary.scalar('gradient_norm', tf.global_norm(gradients)),
        utility.gradient_summaries(
            zip(gradients, variables), dict(value=r'.*'))])
    with tf.control_dependencies([optimize]):
      return [tf.identity(loss), tf.identity(summary)] 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:25,代码来源:algorithm.py

示例11: replace

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def replace(self, episodes, length, rows=None):
    """Replace full episodes.

    Args:
      episodes: Tuple of transition quantities with batch and time dimensions.
      length: Batch of sequence lengths.
      rows: Episodes to replace, defaults to all.

    Returns:
      Operation.
    """
    rows = tf.range(self._capacity) if rows is None else rows
    assert rows.shape.ndims == 1
    assert_capacity = tf.assert_less(
        rows, self._capacity, message='capacity exceeded')
    with tf.control_dependencies([assert_capacity]):
      assert_max_length = tf.assert_less_equal(
          length, self._max_length, message='max length exceeded')
    replace_ops = []
    with tf.control_dependencies([assert_max_length]):
      for buffer_, elements in zip(self._buffers, episodes):
        replace_op = tf.scatter_update(buffer_, rows, elements)
        replace_ops.append(replace_op)
    with tf.control_dependencies(replace_ops):
      return tf.scatter_update(self._length, rows, length) 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:27,代码来源:memory.py

示例12: reset

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def reset(self, indices=None):
    """Reset the batch of environments.

    Args:
      indices: The batch indices of the environments to reset; defaults to all.

    Returns:
      Batch tensor of the new observations.
    """
    if indices is None:
      indices = tf.range(len(self._batch_env))
    observ_dtype = self._parse_dtype(self._batch_env.observation_space)
    observ = tf.py_func(
        self._batch_env.reset, [indices], observ_dtype, name='reset')
    observ = tf.check_numerics(observ, 'observ')
    reward = tf.zeros_like(indices, tf.float32)
    done = tf.zeros_like(indices, tf.bool)
    with tf.control_dependencies([
        tf.scatter_update(self._observ, indices, observ),
        tf.scatter_update(self._reward, indices, reward),
        tf.scatter_update(self._done, indices, done)]):
      return tf.identity(observ) 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:24,代码来源:in_graph_batch_env.py

示例13: begin_episode

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def begin_episode(self, agent_indices):
    """Reset the recurrent states and stored episode.

    Args:
      agent_indices: Tensor containing current batch indices.

    Returns:
      Summary tensor.
    """
    with tf.name_scope('begin_episode/'):
      if self._last_state is None:
        reset_state = tf.no_op()
      else:
        reset_state = utility.reinit_nested_vars(
            self._last_state, agent_indices)
      reset_buffer = self._episodes.clear(agent_indices)
      with tf.control_dependencies([reset_state, reset_buffer]):
        return tf.constant('') 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:20,代码来源:algorithm.py

示例14: set_vars

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def set_vars(var_to_value_dict):
    ops = []
    feed_dict = {}
    for var, value in var_to_value_dict.items():
        assert is_tf_expression(var)
        try:
            setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(':0', '/setter:0')) # look for existing op
        except KeyError:
            with absolute_name_scope(var.name.split(':')[0]):
                with tf.control_dependencies(None): # ignore surrounding control_dependencies
                    setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, 'new_value'), name='setter') # create new setter
        ops.append(setter)
        feed_dict[setter.op.inputs[1]] = value
    run(ops, feed_dict)

#----------------------------------------------------------------------------
# Autosummary creates an identity op that internally keeps track of the input
# values and automatically shows up in TensorBoard. The reported value
# represents an average over input components. The average is accumulated
# constantly over time and flushed when save_summaries() is called.
#
# Notes:
# - The output tensor must be used as an input for something else in the
#   graph. Otherwise, the autosummary op will not get executed, and the average
#   value will not get accumulated.
# - It is perfectly fine to include autosummaries with the same name in
#   several places throughout the graph, even if they are executed concurrently.
# - It is ok to also pass in a python scalar or numpy array. In this case, it
#   is added to the average immediately. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:31,代码来源:tfutil.py

示例15: get_loss_scaling_var

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import control_dependencies [as 别名]
def get_loss_scaling_var(self, device):
        if not self.use_loss_scaling:
            return None
        if device not in self._dev_ls_var:
            with absolute_name_scope(self.scope + '/LossScalingVars'), tf.control_dependencies(None):
                self._dev_ls_var[device] = tf.Variable(np.float32(self.loss_scaling_init), name='loss_scaling_var')
        return self._dev_ls_var[device]

    # Apply dynamic loss scaling for the given expression. 
开发者ID:zalandoresearch,项目名称:disentangling_conditional_gans,代码行数:11,代码来源:tfutil.py


注:本文中的tensorflow.control_dependencies方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。