当前位置: 首页>>代码示例>>Python>>正文


Python tpu_estimator.TPUEstimatorSpec方法代码示例

本文整理汇总了Python中tensorflow.contrib.tpu.python.tpu.tpu_estimator.TPUEstimatorSpec方法的典型用法代码示例。如果您正苦于以下问题:Python tpu_estimator.TPUEstimatorSpec方法的具体用法?Python tpu_estimator.TPUEstimatorSpec怎么用?Python tpu_estimator.TPUEstimatorSpec使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.tpu.python.tpu.tpu_estimator的用法示例。


在下文中一共展示了tpu_estimator.TPUEstimatorSpec方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: estimator_spec_predict

# 需要导入模块: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 别名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimatorSpec [as 别名]
def estimator_spec_predict(self, features, mesh, mesh_impl, use_tpu):
    mtf_samples = mtf.anonymize(self.sample(features, mesh))
    lowering = mtf.Lowering(mesh.graph, {mesh: mesh_impl})
    outputs = lowering.export_to_tf_tensor(mtf_samples)
    if self.has_input:
      ndims = len(outputs.shape.as_list())
      actual_batch_size = tf.shape(features["inputs"])[0]
      outputs = tf.slice(
          outputs, [0] * ndims, [actual_batch_size] + [-1] * (ndims - 1))
    predictions = {
        "outputs": outputs
    }
    if features.get("infer_targets") is not None:
      predictions["infer_targets"] = features["infer_targets"]

    if features.get("inputs") is not None:
      predictions["inputs"] = features["inputs"]

    if use_tpu:
      t2t_model.remove_summaries()
      return tpu_estimator.TPUEstimatorSpec(
          mode=tf.estimator.ModeKeys.PREDICT,
          predictions=predictions,
          prediction_hooks=[mtf.MtfRestoreHook(lowering)])
    else:
      return tf.estimator.EstimatorSpec(
          tf.estimator.ModeKeys.PREDICT,
          predictions=predictions,
          prediction_hooks=[mtf.MtfRestoreHook(lowering)]) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:31,代码来源:mtf_model.py

示例2: estimator_spec_eval

# 需要导入模块: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 别名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimatorSpec [as 别名]
def estimator_spec_eval(
      self, features, logits, labels, loss, restore_hook, use_tpu):
    """Construct EstimatorSpec for EVAL mode."""
    hparams = self.hparams
    problem = hparams.problem
    if logits.get_shape().ndims == 3:
      logits = tf.expand_dims(tf.expand_dims(logits, 2), 3)
    eval_metrics_fns = metrics.create_evaluation_metrics([problem], hparams)

    if use_tpu:
      def metric_fn(tf_logits, labels):
        with tf.device("cpu:0"), mtf.utils.outside_all_rewrites():
          eval_metrics = {}
          for metric_name, metric_fn in six.iteritems(eval_metrics_fns):
            if metric_name.split("/")[-1] not in t2t_model.TPU_METRIC_BLACKLIST:
              eval_metrics[metric_name] = metric_fn(
                  tf_logits, None, tf.identity(labels))
          return eval_metrics
      return tpu_estimator.TPUEstimatorSpec(
          tf.estimator.ModeKeys.EVAL,
          evaluation_hooks=[restore_hook],
          loss=loss,
          eval_metrics=(metric_fn, [logits, labels]))
    else:
      eval_metrics = {}
      predictions = {"predictions": logits}
      for metric_name, metric_fn in six.iteritems(eval_metrics_fns):
        eval_metrics[metric_name] = metric_fn(logits, features,
                                              features["targets"])

      return tf.estimator.EstimatorSpec(
          tf.estimator.ModeKeys.EVAL,
          predictions=predictions,
          eval_metric_ops=eval_metrics,
          evaluation_hooks=[restore_hook],
          loss=loss) 
开发者ID:mlperf,项目名称:training_results_v0.5,代码行数:38,代码来源:mtf_model.py

示例3: estimator_spec_eval

# 需要导入模块: from tensorflow.contrib.tpu.python.tpu import tpu_estimator [as 别名]
# 或者: from tensorflow.contrib.tpu.python.tpu.tpu_estimator import TPUEstimatorSpec [as 别名]
def estimator_spec_eval(
      self, features, logits, labels, loss, restore_hook, use_tpu):
    """Construct EstimatorSpec for EVAL mode."""
    hparams = self.hparams
    problem = hparams.problem
    if logits.get_shape().ndims == 3:
      logits = tf.expand_dims(tf.expand_dims(logits, 2), 3)

    # Support for multiproblem
    task_list = [problem]
    if hasattr(problem, "task_list"):
      task_list = problem.task_list

    eval_metrics_fns = metrics.create_evaluation_metrics(task_list, hparams)

    if use_tpu:
      def metric_fn(tf_logits, labels):
        with tf.device("cpu:0"), mtf.utils.outside_all_rewrites():
          eval_metrics = {}
          for metric_name, metric_fn in six.iteritems(eval_metrics_fns):
            if metric_name.split("/")[-1] not in t2t_model.TPU_METRIC_BLACKLIST:
              eval_metrics[metric_name] = metric_fn(
                  tf_logits, None, tf.identity(labels))
          return eval_metrics
      return tpu_estimator.TPUEstimatorSpec(
          tf.estimator.ModeKeys.EVAL,
          evaluation_hooks=[restore_hook],
          loss=loss,
          eval_metrics=(metric_fn, [logits, labels]))
    else:
      eval_metrics = {}
      predictions = {"predictions": logits}
      for metric_name, metric_fn in six.iteritems(eval_metrics_fns):
        eval_metrics[metric_name] = metric_fn(logits, features,
                                              features["targets"])

      return tf.estimator.EstimatorSpec(
          tf.estimator.ModeKeys.EVAL,
          predictions=predictions,
          eval_metric_ops=eval_metrics,
          evaluation_hooks=[restore_hook],
          loss=loss) 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:44,代码来源:mtf_model.py


注:本文中的tensorflow.contrib.tpu.python.tpu.tpu_estimator.TPUEstimatorSpec方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。