当前位置: 首页>>代码示例>>Python>>正文


Python tpu.RunConfig方法代码示例

本文整理汇总了Python中tensorflow.contrib.tpu.RunConfig方法的典型用法代码示例。如果您正苦于以下问题:Python tpu.RunConfig方法的具体用法?Python tpu.RunConfig怎么用?Python tpu.RunConfig使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.tpu的用法示例。


在下文中一共展示了tpu.RunConfig方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: make_tpu_run_config

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def make_tpu_run_config(master, seed, model_dir, iterations_per_loop,
                        save_checkpoints_steps):
  return contrib_tpu.RunConfig(
      master=master,
      evaluation_master=master,
      model_dir=model_dir,
      save_checkpoints_steps=save_checkpoints_steps,
      cluster=None,
      tf_random_seed=seed,
      tpu_config=contrib_tpu.TPUConfig(iterations_per_loop=iterations_per_loop)) 
开发者ID:tensorflow,项目名称:kfac,代码行数:12,代码来源:classifier_mnist_tpu_estimator.py

示例2: get_tpu_run_config

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def get_tpu_run_config(self):
    """Get the TPU RunConfig for Estimator model.

    Returns:
      contrib_tpu.RunConfig() for this model.
    """
    return gin_configurable_tpu_run_config_cls(
        master=FLAGS.master, tpu_config=gin_configurable_tpu_config_cls()) 
开发者ID:google-research,项目名称:tensor2robot,代码行数:10,代码来源:abstract_model.py

示例3: get_run_config

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def get_run_config(self):
    """Get the RunConfig for Estimator model."""
    return self._t2r_model.get_run_config() 
开发者ID:google-research,项目名称:tensor2robot,代码行数:5,代码来源:tpu_model_wrapper.py

示例4: get_tpu_run_config

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def get_tpu_run_config(self):
    """Get the TPU RunConfig for Estimator model."""
    return self._t2r_model.get_tpu_run_config() 
开发者ID:google-research,项目名称:tensor2robot,代码行数:5,代码来源:tpu_model_wrapper.py

示例5: get_run_config

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def get_run_config(self):
    """Get the RunConfig for Estimator model.""" 
开发者ID:google-research,项目名称:tensor2robot,代码行数:4,代码来源:model_interface.py

示例6: get_tpu_run_config

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def get_tpu_run_config(self):
    """Get the TPU RunConfig for Estimator model.""" 
开发者ID:google-research,项目名称:tensor2robot,代码行数:4,代码来源:model_interface.py

示例7: _train_and_eval_reference_model

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def _train_and_eval_reference_model(self, path, multi_dataset=False):
    model_dir = self.create_tempdir().full_path
    mock_t2r_model = mocks.MockT2RModel(
        preprocessor_cls=noop_preprocessor.NoOpPreprocessor,
        multi_dataset=multi_dataset)

    # We create a tpu estimator for potential training.
    estimator = contrib_tpu.TPUEstimator(
        model_fn=mock_t2r_model.model_fn,
        use_tpu=mock_t2r_model.is_device_tpu,
        config=contrib_tpu.RunConfig(model_dir=model_dir),
        train_batch_size=BATCH_SIZE,
        eval_batch_size=BATCH_SIZE)

    mock_input_generator = mocks.MockInputGenerator(batch_size=BATCH_SIZE,
                                                    multi_dataset=multi_dataset)
    mock_input_generator.set_specification_from_model(
        mock_t2r_model, tf.estimator.ModeKeys.TRAIN)

    # We optimize our network.
    estimator.train(
        input_fn=mock_input_generator.create_dataset_input_fn(
            mode=tf.estimator.ModeKeys.TRAIN),
        max_steps=MAX_STEPS)

    # Verify that the serving estimator does exactly the same as the normal
    # estimator with all the parameters.
    estimator_predict = tf.estimator.Estimator(
        model_fn=mock_t2r_model.model_fn,
        config=tf.estimator.RunConfig(model_dir=model_dir))

    prediction_ref = estimator_predict.predict(
        input_fn=mock_input_generator.create_dataset_input_fn(
            mode=tf.estimator.ModeKeys.EVAL))

    return model_dir, mock_t2r_model, prediction_ref 
开发者ID:google-research,项目名称:tensor2robot,代码行数:38,代码来源:default_export_generator_test.py

示例8: test_create_serving_input_receiver_numpy

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def test_create_serving_input_receiver_numpy(self):
    (model_dir, mock_t2r_model,
     prediction_ref) = self._train_and_eval_reference_model('numpy')
    exporter = default_export_generator.DefaultExportGenerator()
    exporter.set_specification_from_model(mock_t2r_model)

    # Export trained serving estimator.
    estimator_exporter = tf.estimator.Estimator(
        model_fn=mock_t2r_model.model_fn,
        config=tf.estimator.RunConfig(model_dir=model_dir))

    serving_input_receiver_fn = (
        exporter.create_serving_input_receiver_numpy_fn())
    exported_savedmodel_path = estimator_exporter.export_saved_model(
        export_dir_base=model_dir,
        serving_input_receiver_fn=serving_input_receiver_fn,
        checkpoint_path=tf.train.latest_checkpoint(model_dir))

    # Load trained and exported serving estimator, run prediction and assert
    # it is the same as before exporting.
    feed_predictor_fn = contrib_predictor.from_saved_model(
        exported_savedmodel_path)
    mock_input_generator = mocks.MockInputGenerator(batch_size=BATCH_SIZE)
    features, labels = mock_input_generator.create_numpy_data()
    for pos, value in enumerate(prediction_ref):
      actual = feed_predictor_fn({'x': features[pos, :].reshape(
          1, -1)})['logit'].flatten()
      predicted = value['logit'].flatten()
      np.testing.assert_almost_equal(
          actual=actual, desired=predicted, decimal=4)
      if labels[pos] > 0:
        self.assertGreater(predicted[0], 0)
      else:
        self.assertLess(predicted[0], 0) 
开发者ID:google-research,项目名称:tensor2robot,代码行数:36,代码来源:default_export_generator_test.py

示例9: __init__

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def __init__(self, tokenizer, init_checkpoint):
    """Setup BERT model."""
    self.max_seq_length = FLAGS.max_hotpot_seq_length
    self.max_qry_length = FLAGS.max_hotpot_query_length
    self.batch_size = 1
    self.tokenizer = tokenizer
    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
    with tf.device("/cpu:0"):
      model_fn = hotpot_model_fn_builder(
          bert_config=bert_config,
          init_checkpoint=init_checkpoint,
          learning_rate=0.0,
          num_train_steps=0,
          num_warmup_steps=0,
          use_tpu=False,
          use_one_hot_embeddings=False)
    run_config = contrib_tpu.RunConfig()
    estimator = contrib_tpu.TPUEstimator(
        use_tpu=False,
        model_fn=model_fn,
        config=run_config,
        train_batch_size=self.batch_size,
        predict_batch_size=self.batch_size)
    self.fast_predictor = FastPredict(estimator,
                                      self.get_input_fn)
    self._PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction",
        ["start_index", "end_index", "start_logit", "end_logit"]) 
开发者ID:google-research,项目名称:language,代码行数:30,代码来源:demo.py

示例10: inference_network_fn

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def inference_network_fn(
      self,
      features,
      labels,
      mode,
      config = None,
      params = None):
    """The inference network implementation.

    This creates the main network based on features.
    Optionally (mode=ModeKeys.TRAIN or ModeKeys.EVAL) the model can do
    additional processing on labels, however, it has to be ensured that this is
    optional and the graph is fully operational without labels. At inference
    time we will have no access to labels. Tensors which are required for loss
    computation or debugging must be put into the inference_outputs dict.
    Having a dedicated inference_network_fn allows to compose new networks by
    using other TFModels.

    Please, use the following pattern to add not supported tpu model components
    such as tf.summary.*
    if self.use_summaries(params):
      # Do operations which are not supported on tpus.

    If your model does not support TPUs at all, please call the following
    function.
    self.raise_no_tpu_support()

    Args:
      features: This is the first item returned from the input_fn and parsed by
        tensorspec_utils.validate_and_pack. A spec_structure which fulfills the
        requirements of the self.get_feature_specification.
      labels: This is the second item returned from the input_fn and parsed by
        tensorspec_utils.validate_and_pack. A spec_structure which fulfills the
        requirements of the self.get_feature_specification.
      mode: (ModeKeys) Specifies if this is training, evaluation or prediction.
      config: (Optional tf.estimator.RunConfig or contrib_tpu.RunConfig) Will
        receive what is passed to Estimator in config parameter, or the default
        config (tf.estimator.RunConfig). Allows updating things in your model_fn
        based on  configuration such as num_ps_replicas, or model_dir.
      params: An optional dict of hyper parameters that will be passed into
        input_fn and model_fn. Keys are names of parameters, values are basic
        python types. There are reserved keys for TPUEstimator, including
        'batch_size'.

    Returns:
      inference_outputs: A dict with output tensors.
    """ 
开发者ID:google-research,项目名称:tensor2robot,代码行数:49,代码来源:abstract_model.py

示例11: model_train_fn

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def model_train_fn(self,
                     features,
                     labels,
                     inference_outputs,
                     mode,
                     config = None,
                     params = None):
    """The training model implementation.

    This model_fn should add the loss computation based on the inference_outputs
    and labels. For better debugging we also provide access to the input
    features. Note, no new variables should be generated in this model_fn since
    the model_inference_fn and the maybe_init_from_checkpoint function would
    not have access to these variables. We output the final loss (scalar) and
    a dict of optional train_outputs which might be useful for the
    model_eval_fn.

    Please, use the following pattern to add not supported tpu model components
    such as tf.summary.*
    if self.use_summaries(params):
      # Do operations which are not supported on tpus.

    If your model does not support TPUs at all, please call the following
    function.
    self.raise_no_tpu_support()

    Args:
      features: This is the first item returned from the input_fn and parsed by
        tensorspec_utils.validate_and_pack. A spec_structure which fulfills the
        requirements of the self.get_feature_specification.
      labels: This is the second item returned from the input_fn and parsed by
        tensorspec_utils.validate_and_pack. A spec_structure which fulfills the
        requirements of the self.get_feature_specification.
      inference_outputs: A dict containing the output tensors of
        model_inference_fn.
      mode: (ModeKeys) Specifies if this is training, evaluation or prediction.
      config: (Optional tf.estimator.RunConfig or contrib_tpu.RunConfig) Will
        receive what is passed to Estimator in config parameter, or the default
        config (tf.estimator.RunConfig). Allows updating things in your model_fn
        based on  configuration such as num_ps_replicas, or model_dir.
      params: An optional dict of hyper parameters that will be passed into
        input_fn and model_fn. Keys are names of parameters, values are basic
        python types. There are reserved keys for TPUEstimator, including
        'batch_size'.

    Returns:
      loss: The loss we will optimize.
      train_outputs: (Optional) A dict with additional tensors the training
        model generates. We output these tensors such that model_eval_fn could
        introspect these tensors.
    """ 
开发者ID:google-research,项目名称:tensor2robot,代码行数:53,代码来源:abstract_model.py

示例12: model_eval_fn

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def model_eval_fn(self,
                    features,
                    labels,
                    inference_outputs,
                    train_loss,
                    train_outputs,
                    mode,
                    config = None,
                    params = None):
    """The eval model implementation, by default we report the loss for eval.

    This function should add the eval_metrics computation based on the
    inference_outputs, labels and the train_loss. For better debugging we also
    provide access to the input features and the train_outputs. Note, no new
    variables should be generated in this model_fn since the model_inference_fn
    and the maybe_init_from_checkpoint function would not have access to these
    variables.

    Please, use the following pattern to add not supported tpu model components
    such as tf.summary.*
    if self.use_summaries(params):
      # Do operations which are not supported on tpus.

    If your model does not support TPUs at all, please call the following
    function.
    self.raise_no_tpu_support()

    Args:
      features: This is the first item returned from the input_fn and parsed by
        tensorspec_utils.validate_and_pack. A spec_structure which fulfills the
        requirements of the self.get_feature_specification.
      labels: This is the second item returned from the input_fn and parsed by
        tensorspec_utils.validate_and_pack. A spec_structure which fulfills the
        requirements of the self.get_feature_specification.
      inference_outputs: A dict containing the output tensors of
        model_inference_fn.
      train_loss: The final loss from model_train_fn.
      train_outputs: A dict containing the output tensors (dict) of
        model_train_fn.
      mode: (ModeKeys) Specifies if this is training, evaluation or prediction.
      config: (Optional tf.estimator.RunConfig or contrib_tpu.RunConfig) Will
        receive what is passed to Estimator in config parameter, or the default
        config (tf.estimator.RunConfig). Allows updating things in your model_fn
        based on  configuration such as num_ps_replicas, or model_dir.
      params: An optional dict of hyper parameters that will be passed into
        input_fn and model_fn. Keys are names of parameters, values are basic
        python types. There are reserved keys for TPUEstimator, including
        'batch_size'.

    Returns:
      eval_metrics: A tuple of (metric_fn, metric_fn_inputs) where metric_fn
        is a dict with {metric_description: tf.metrics.*}.
    """
    del features, labels, inference_outputs, train_loss, train_outputs
    del mode, config, params
    # By default we don't have any eval_metrics. The loss computation used
    # to optimize the model_fn will be reported for the model_eval_fn as well.
    # Hence, by default the EVAL mode can be used to determine the loss
    # performance on the eval dataset or even a larger train dataset.
    return None 
开发者ID:google-research,项目名称:tensor2robot,代码行数:62,代码来源:abstract_model.py

示例13: add_summaries

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def add_summaries(self,
                    features,
                    labels,
                    inference_outputs,
                    train_loss,
                    train_outputs,
                    mode,
                    config = None,
                    params = None):
    """Add summaries to the graph.

    Having a central place to add all summaries to the graph is helpful in order
    to compose models. For example, if an inference_network_fn is used within
    a while loop no summaries can be added. This function will allow to add
    summaries after the while loop has been processed.

    Args:
      features: This is the first item returned from the input_fn and parsed by
        tensorspec_utils.validate_and_pack. A spec_structure which fulfills the
        requirements of the self.get_feature_specification.
      labels: This is the second item returned from the input_fn and parsed by
        tensorspec_utils.validate_and_pack. A spec_structure which fulfills the
        requirements of the self.get_feature_specification.
      inference_outputs: A dict containing the output tensors of
        model_inference_fn.
      train_loss: The final loss from model_train_fn.
      train_outputs: A dict containing the output tensors (dict) of
        model_train_fn.
      mode: (ModeKeys) Specifies if this is training, evaluation or prediction.
      config: (Optional tf.estimator.RunConfig or contrib_tpu.RunConfig) Will
        receive what is passed to Estimator in config parameter, or the default
        config (tf.estimator.RunConfig). Allows updating things in your model_fn
        based on  configuration such as num_ps_replicas, or model_dir.
      params: An optional dict of hyper parameters that will be passed into
        input_fn and model_fn. Keys are names of parameters, values are basic
        python types. There are reserved keys for TPUEstimator, including
        'batch_size'.
    """
    del features, labels, inference_outputs, train_loss, train_outputs, mode
    del config
    if not self.use_summaries(params):
      return 
开发者ID:google-research,项目名称:tensor2robot,代码行数:44,代码来源:abstract_model.py

示例14: create_export_outputs_fn

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def create_export_outputs_fn(self,
                               features,
                               inference_outputs,
                               mode,
                               config = None,
                               params = None):
    """We export the final output used for model inference.

    This model_fn should create the optional export_outputs, see
    tf.estimator.EstimatorSpec for a more in depth description, and the
    required predictions dict. Note, the predictions dict should more often
    than not be a small subset of the inference_outputs.

    Please, use the following pattern to add not supported tpu model components
    such as tf.summary.*
    if self.use_summaries(params):
      # Do operations which are not supported on tpus.

    If your model does not support TPUs at all, please call the following
    function.
    self.raise_no_tpu_support()

    Args:
      features: This is the first item returned from the input_fn and parsed by
        tensorspec_utils.validate_and_pack. A spec_structure which fulfills the
        requirements of the self.get_feature_specification.
      inference_outputs: A dict containing the output tensors of
        model_inference_fn.
      mode: (ModeKeys) Specifies if this is training, evaluation or prediction.
      config: (Optional tf.estimator.RunConfig or contrib_tpu.RunConfig) Will
        receive what is passed to Estimator in config parameter, or the default
        config (tf.estimator.RunConfig). Allows updating things in your model_fn
        based on  configuration such as num_ps_replicas, or model_dir.
      params: An optional dict of hyper parameters that will be passed into
        input_fn and model_fn. Keys are names of parameters, values are basic
        python types. There are reserved keys for TPUEstimator, including
        'batch_size'.

    Returns:
      predictions: A dict of tensors.
      export_outputs: (Optional) A dict containing an arbitrary name for the
        output and tf.estimator.export.PredictOutput(output_dict) as value.
        The output dict is a {name: tensor} mapping. If None, the default
        mapping for predictions is generated. The export_outputs are used
        for the serving model. Multi-headed models should have one name
        per head.
    """
    del features, mode, config, params
    # By default we will export all outputs generated by the
    # inference_network_fn.
    return inference_outputs 
开发者ID:google-research,项目名称:tensor2robot,代码行数:53,代码来源:abstract_model.py

示例15: test_create_serving_input_receiver_tf_example

# 需要导入模块: from tensorflow.contrib import tpu [as 别名]
# 或者: from tensorflow.contrib.tpu import RunConfig [as 别名]
def test_create_serving_input_receiver_tf_example(self, multi_dataset):
    (model_dir, mock_t2r_model,
     prediction_ref) = self._train_and_eval_reference_model(
         'tf_example', multi_dataset=multi_dataset)

    # Now we can actually export our serving estimator.
    estimator_exporter = tf.estimator.Estimator(
        model_fn=mock_t2r_model.model_fn,
        config=tf.estimator.RunConfig(model_dir=model_dir))

    exporter = default_export_generator.DefaultExportGenerator()
    exporter.set_specification_from_model(mock_t2r_model)
    serving_input_receiver_fn = (
        exporter.create_serving_input_receiver_tf_example_fn())
    exported_savedmodel_path = estimator_exporter.export_saved_model(
        export_dir_base=model_dir,
        serving_input_receiver_fn=serving_input_receiver_fn,
        checkpoint_path=tf.train.latest_checkpoint(model_dir))

    # Now we can load our exported estimator graph, there are no dependencies
    # on the model_fn or preprocessor anymore.
    feed_predictor_fn = contrib_predictor.from_saved_model(
        exported_savedmodel_path)
    mock_input_generator = mocks.MockInputGenerator(batch_size=BATCH_SIZE)
    features, labels = mock_input_generator.create_numpy_data()
    for pos, value in enumerate(prediction_ref):
      # We have to create our serialized tf.Example proto.
      example = tf.train.Example()
      example.features.feature['measured_position'].float_list.value.extend(
          features[pos])
      serialized_example = np.array(example.SerializeToString()).reshape(1,)
      if multi_dataset:
        feed_dict = {
            'input_example_dataset1': serialized_example,
            'input_example_dataset2': serialized_example
        }
      else:
        feed_dict = {
            'input_example_tensor': serialized_example
        }
      actual = feed_predictor_fn(feed_dict)['logit'].flatten()
      predicted = value['logit'].flatten()
      np.testing.assert_almost_equal(
          actual=actual, desired=predicted, decimal=4)
      if labels[pos] > 0:
        self.assertGreater(predicted[0], 0)
      else:
        self.assertLess(predicted[0], 0) 
开发者ID:google-research,项目名称:tensor2robot,代码行数:50,代码来源:default_export_generator_test.py


注:本文中的tensorflow.contrib.tpu.RunConfig方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。