本文整理汇总了Python中tensorflow.contrib.slim.variance_scaling_initializer方法的典型用法代码示例。如果您正苦于以下问题:Python slim.variance_scaling_initializer方法的具体用法?Python slim.variance_scaling_initializer怎么用?Python slim.variance_scaling_initializer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.slim
的用法示例。
在下文中一共展示了slim.variance_scaling_initializer方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _extra_conv_arg_scope_with_bn
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001,
activation_fn=None,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
}
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
示例2: resnet_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def resnet_arg_scope(is_training=True,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例3: resnet_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def resnet_arg_scope(freeze_norm, is_training=True, weight_decay=0.0001,
batch_norm_decay=0.9, batch_norm_epsilon=1e-5, batch_norm_scale=True):
batch_norm_params = {
'is_training': False, 'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
'data_format': DATA_FORMAT
}
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例4: resnet_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def resnet_arg_scope(is_training=True,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
# weights_regularizer=slim.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
weights_regularizer=None,
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例5: resnet_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def resnet_arg_scope(is_training=True,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例6: inception_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def inception_arg_scope(is_training=True,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例7: _create_baseline
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def _create_baseline(self, n_output=1, n_hidden=100,
is_zero_init=False,
collection='BASELINE'):
# center input
h = self._x
if self.mean_xs is not None:
h -= self.mean_xs
if is_zero_init:
initializer = init_ops.zeros_initializer()
else:
initializer = slim.variance_scaling_initializer()
with slim.arg_scope([slim.fully_connected],
variables_collections=[collection, Q_COLLECTION],
trainable=False,
weights_initializer=initializer):
h = slim.fully_connected(h, n_hidden, activation_fn=tf.nn.tanh)
baseline = slim.fully_connected(h, n_output, activation_fn=None)
if n_output == 1:
baseline = tf.reshape(baseline, [-1]) # very important to reshape
return baseline
示例8: _resnet_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def _resnet_arg_scope():
batch_norm_params = {
'is_training': False,
'decay': 0.997,
'epsilon': 1e-5,
'scale': True,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS
}
with arg_scope([slim.conv2d],
weights_regularizer=slim.l2_regularizer(0.0001),
weights_initializer=slim.variance_scaling_initializer(),
trainable=False,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例9: network_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def network_arg_scope(is_training=True,
weight_decay=cfg.train.weight_decay,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': is_training, 'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale,
'updates_collections': ops.GraphKeys.UPDATE_OPS,
#'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
'trainable': cfg.train.bn_training,
}
with slim.arg_scope(
[slim.conv2d, slim.separable_convolution2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu6,
#activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params,
padding='SAME'):
with slim.arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例10: _extra_conv_arg_scope_with_bn
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001,
activation_fn=None,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS_EXTRA,
}
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
示例11: resnet_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def resnet_arg_scope(is_training=True,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例12: resnet_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def resnet_arg_scope(is_training=True):
"""Sets up the default arguments for the CIFAR-10 resnet model."""
batch_norm_params = {
'is_training': is_training,
'decay': 0.9,
'epsilon': 0.001,
'scale': True,
# This forces batch_norm to compute the moving averages in-place
# instead of using a global collection which does not work with tf.cond.
# 'updates_collections': None,
}
with slim.arg_scope([slim.conv2d, slim.batch_norm], activation_fn=lrelu):
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(0.0002),
weights_initializer=slim.variance_scaling_initializer(),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例13: resnet_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def resnet_arg_scope(is_training=True,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': False,
'updates_collections': tf.GraphKeys.UPDATE_OPS
}
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例14: resnet_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def resnet_arg_scope(is_training=True,
weight_decay=cfg.TRAIN.WEIGHT_DECAY,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': False,
'updates_collections': ops.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d, slim.fully_connected],
weights_regularizer = tf.contrib.layers.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
weights_initializer = slim.variance_scaling_initializer(),
biases_regularizer = tf.contrib.layers.l2_regularizer(cfg.TRAIN.WEIGHT_DECAY),
biases_initializer = tf.constant_initializer(0.0),
trainable = is_training,
activation_fn = tf.nn.relu,
normalizer_fn = slim.batch_norm,
normalizer_params = batch_norm_params):
with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例15: network_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import variance_scaling_initializer [as 别名]
def network_arg_scope(
is_training=True, weight_decay=cfg.train.weight_decay, batch_norm_decay=0.997,
batch_norm_epsilon=1e-5, batch_norm_scale=False):
batch_norm_params = {
'is_training': is_training, 'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale,
'updates_collections': ops.GraphKeys.UPDATE_OPS,
#'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
'trainable': cfg.train.bn_training,
}
with slim.arg_scope(
[slim.conv2d, slim.separable_convolution2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
trainable=is_training,
activation_fn=h_swish,
#activation_fn=tf.nn.relu6,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params,
padding='valid'):
with slim.arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc