本文整理汇总了Python中tensorflow.contrib.slim.separable_conv2d方法的典型用法代码示例。如果您正苦于以下问题:Python slim.separable_conv2d方法的具体用法?Python slim.separable_conv2d怎么用?Python slim.separable_conv2d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.slim
的用法示例。
在下文中一共展示了slim.separable_conv2d方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: mobilenetv2_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def mobilenetv2_scope(is_training=True,
trainable=True,
weight_decay=0.00004,
stddev=0.09,
dropout_keep_prob=0.8,
bn_decay=0.997):
"""Defines Mobilenet training scope.
In default. We do not use BN
ReWrite the scope.
"""
batch_norm_params = {
'is_training': False,
'trainable': False,
'decay': bn_decay,
}
with slim.arg_scope(training_scope(is_training=is_training, weight_decay=weight_decay)):
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.separable_conv2d],
trainable=trainable):
with slim.arg_scope([slim.batch_norm], **batch_norm_params) as sc:
return sc
示例2: mobilenetv2_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def mobilenetv2_scope(is_training=True,
trainable=True,
weight_decay=0.00004,
stddev=0.09,
dropout_keep_prob=0.8,
bn_decay=0.997):
"""Defines Mobilenet training scope.
In default. We do not use BN
ReWrite the scope.
"""
batch_norm_params = {
'is_training': False,
'trainable': False,
'decay': bn_decay,
}
with slim.arg_scope(training_scope(is_training=is_training, weight_decay=weight_decay)):
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.separable_conv2d],
trainable=trainable):
with slim.arg_scope([slim.batch_norm], **batch_norm_params) as sc:
return sc
示例3: mobilenet_v2_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def mobilenet_v2_arg_scope(weight_decay, is_training=True, depth_multiplier=1.0, regularize_depthwise=False,
dropout_keep_prob=1.0):
regularizer = tf.contrib.layers.l2_regularizer(weight_decay)
if regularize_depthwise:
depthwise_regularizer = regularizer
else:
depthwise_regularizer = None
with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm,
normalizer_params={'is_training': is_training, 'center': True, 'scale': True }):
with slim.arg_scope([slim.conv2d], weights_regularizer=regularizer):
with slim.arg_scope([slim.separable_conv2d],
weights_regularizer=depthwise_regularizer, depth_multiplier=depth_multiplier):
with slim.arg_scope([slim.dropout], is_training=is_training, keep_prob=dropout_keep_prob) as sc:
return sc
示例4: _context
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def _context(self, net, is_training, name, iter):
num_layers = cfg.MEM.CT_L
xavier = tf.contrib.layers.variance_scaling_initializer()
assert num_layers % 2 == 1
conv = cfg.MEM.CT_CONV
with tf.variable_scope(name):
with slim.arg_scope([slim.conv2d, slim.separable_conv2d],
activation_fn=None,
trainable=is_training,
weights_initializer=xavier,
biases_initializer=tf.constant_initializer(0.0)):
net = self._context_conv(net, cfg.MEM.CT_FCONV, "conv1")
for i in xrange(2, num_layers+1, 2):
net1 = tf.nn.relu(net, name="relu%02d" % (i-1))
self._act_summaries.append(net1)
self._score_summaries[iter].append(net1)
net1 = self._context_conv(net1, conv, "conv%02d" % i)
net2 = tf.nn.relu(net1, name="relu%02d" % i)
self._act_summaries.append(net2)
self._score_summaries[iter].append(net2)
net2 = self._context_conv(net2, conv, "conv%02d" % (i+1))
net = tf.add(net, net2, "residual%02d" % i)
return net
示例5: test_slim_dilated_depthwise_conv
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def test_slim_dilated_depthwise_conv(self):
graph = tf.Graph()
with graph.as_default() as g:
inputs = tf.placeholder(tf.float32, shape=[None,16,16,3],
name='test_slim_separable_conv2d/input')
with slim.arg_scope([slim.separable_conv2d], padding='SAME',
weights_initializer=tf.truncated_normal_initializer(stddev=0.3)):
net = slim.separable_conv2d(inputs,
num_outputs=None,
stride=1,
depth_multiplier=1,
kernel_size=[3, 3],
rate=2,
scope='conv1')
output_name = [net.op.name]
self._test_tf_model(graph,
{"test_slim_separable_conv2d/input:0":[1,16,16,3]},
output_name, delta=1e-2)
示例6: constructed_ops
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def constructed_ops(self):
"""Returns a dictionary between op names built to their NUM_OUTPUTS.
The dictionary will contain an op.name: NUM_OUTPUTS pair for each op
constructed by the decorator. The dictionary is ordered according to the
order items were added.
The parameterization is accumulated during all the calls to the object's
members, such as `conv2d`, `fully_connected` and `separable_conv2d`.
The values used are either the values from the parameterization set for
the object, or the values that where passed to the members.
"""
return self._constructed_ops
示例7: depthwise_conv_bn
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def depthwise_conv_bn(x, kernel_size, strides=1, dilation=1):
with tf.variable_scope(None, 'depthwise_conv_bn'):
x = slim.separable_conv2d(x, None, kernel_size, depth_multiplier=1, stride=strides,
rate=dilation, activation_fn=None, biases_initializer=None)
x = slim.batch_norm(x, activation_fn=None, fused=False)
return x
示例8: depth_bn_point_bn
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def depth_bn_point_bn(x,kernel_size,point_filters,strides=1,dilation=1):
with tf.variable_scope(None, 'depth_bn_point_bn'):
x = slim.separable_conv2d(x, None, kernel_size, depth_multiplier=1, stride=strides,
rate=dilation, activation_fn=None, biases_initializer=None)
x = slim.batch_norm(x, activation_fn=None, fused=False)
x = slim.conv2d(x, point_filters, 1, 1, rate=1,
biases_initializer=None, activation_fn=None)
x = slim.batch_norm(x, activation_fn=None, fused=False)
return x
示例9: depth_bn_point_bn_relu
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def depth_bn_point_bn_relu(x,kernel_size,point_filters,strides=1,dilation=1):
with tf.variable_scope(None, 'depth_bn_point_bn_relu'):
x = slim.separable_conv2d(x, None, kernel_size, depth_multiplier=1, stride=strides,
rate=dilation, activation_fn=None, biases_initializer=None)
x = slim.batch_norm(x, activation_fn=None, fused=False)
x = slim.conv2d(x, point_filters, 1, 1, rate=1,
biases_initializer=None, activation_fn=None)
x = slim.batch_norm(x, activation_fn=tf.nn.relu, fused=False)
return x
示例10: depth_bn_relu_point_bn_relu
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def depth_bn_relu_point_bn_relu(x,kernel_size,point_filters,strides=1,dilation=1):
with tf.variable_scope(None, 'depth_bn_relu_point_bn_relu'):
x = slim.separable_conv2d(x, None, kernel_size, depth_multiplier=1, stride=strides,
rate=dilation, activation_fn=None, biases_initializer=None)
x = slim.batch_norm(x, activation_fn=tf.nn.relu, fused=False)
x = slim.conv2d(x, point_filters, 1, 1, rate=1,
biases_initializer=None, activation_fn=None)
x = slim.batch_norm(x, activation_fn=tf.nn.relu, fused=False)
return x
示例11: nasnet_cifar_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def nasnet_cifar_arg_scope(weight_decay=5e-4,
batch_norm_decay=0.9,
batch_norm_epsilon=1e-5):
"""Defines the default arg scope for the NASNet-A Cifar model.
Args:
weight_decay: The weight decay to use for regularizing the model.
batch_norm_decay: Decay for batch norm moving average.
batch_norm_epsilon: Small float added to variance to avoid dividing by zero
in batch norm.
Returns:
An `arg_scope` to use for the NASNet Cifar Model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': batch_norm_epsilon,
'scale': True,
'fused': True,
}
weights_regularizer = contrib_layers.l2_regularizer(weight_decay)
weights_initializer = contrib_layers.variance_scaling_initializer(
mode='FAN_OUT')
with arg_scope(
[slim.fully_connected, slim.conv2d, slim.separable_conv2d],
weights_regularizer=weights_regularizer,
weights_initializer=weights_initializer):
with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'):
with arg_scope(
[slim.conv2d, slim.separable_conv2d],
activation_fn=None,
biases_initializer=None):
with arg_scope([slim.batch_norm], **batch_norm_params) as sc:
return sc
示例12: nasnet_mobile_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def nasnet_mobile_arg_scope(weight_decay=4e-5,
batch_norm_decay=0.9997,
batch_norm_epsilon=1e-3):
"""Defines the default arg scope for the NASNet-A Mobile ImageNet model.
Args:
weight_decay: The weight decay to use for regularizing the model.
batch_norm_decay: Decay for batch norm moving average.
batch_norm_epsilon: Small float added to variance to avoid dividing by zero
in batch norm.
Returns:
An `arg_scope` to use for the NASNet Mobile Model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': batch_norm_epsilon,
'scale': True,
'fused': True,
}
weights_regularizer = contrib_layers.l2_regularizer(weight_decay)
weights_initializer = contrib_layers.variance_scaling_initializer(
mode='FAN_OUT')
with arg_scope(
[slim.fully_connected, slim.conv2d, slim.separable_conv2d],
weights_regularizer=weights_regularizer,
weights_initializer=weights_initializer):
with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'):
with arg_scope(
[slim.conv2d, slim.separable_conv2d],
activation_fn=None,
biases_initializer=None):
with arg_scope([slim.batch_norm], **batch_norm_params) as sc:
return sc
示例13: nasnet_large_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def nasnet_large_arg_scope(weight_decay=5e-5,
batch_norm_decay=0.9997,
batch_norm_epsilon=1e-3):
"""Defines the default arg scope for the NASNet-A Large ImageNet model.
Args:
weight_decay: The weight decay to use for regularizing the model.
batch_norm_decay: Decay for batch norm moving average.
batch_norm_epsilon: Small float added to variance to avoid dividing by zero
in batch norm.
Returns:
An `arg_scope` to use for the NASNet Large Model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': batch_norm_epsilon,
'scale': True,
'fused': True,
}
weights_regularizer = contrib_layers.l2_regularizer(weight_decay)
weights_initializer = contrib_layers.variance_scaling_initializer(
mode='FAN_OUT')
with arg_scope(
[slim.fully_connected, slim.conv2d, slim.separable_conv2d],
weights_regularizer=weights_regularizer,
weights_initializer=weights_initializer):
with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'):
with arg_scope(
[slim.conv2d, slim.separable_conv2d],
activation_fn=None,
biases_initializer=None):
with arg_scope([slim.batch_norm], **batch_norm_params) as sc:
return sc
示例14: _stacked_separable_conv
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def _stacked_separable_conv(net, stride, operation, filter_size):
"""Takes in an operations and parses it to the correct sep operation."""
num_layers, kernel_size = _operation_to_info(operation)
net_type = net.dtype
net = tf.cast(net, tf.float32) if net_type == tf.float16 else net
for layer_num in range(num_layers - 1):
net = tf.nn.relu(net)
net = slim.separable_conv2d(
net,
filter_size,
kernel_size,
depth_multiplier=1,
scope='separable_{0}x{0}_{1}'.format(kernel_size, layer_num + 1),
stride=stride)
net = slim.batch_norm(
net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, layer_num + 1))
stride = 1
net = tf.nn.relu(net)
net = slim.separable_conv2d(
net,
filter_size,
kernel_size,
depth_multiplier=1,
scope='separable_{0}x{0}_{1}'.format(kernel_size, num_layers),
stride=stride)
net = slim.batch_norm(
net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, num_layers))
net = tf.cast(net, net_type)
return net
示例15: separable_conv2d_same
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import separable_conv2d [as 别名]
def separable_conv2d_same(inputs, kernel_size, stride, rate=1, scope=None):
"""Strided 2-D separable convolution with 'SAME' padding.
Args:
inputs: A 4-D tensor of size [batch, height_in, width_in, channels].
kernel_size: An int with the kernel_size of the filters.
stride: An integer, the output stride.
rate: An integer, rate for atrous convolution.
scope: Scope.
Returns:
output: A 4-D tensor of size [batch, height_out, width_out, channels] with
the convolution output.
"""
# By passing filters=None
# separable_conv2d produces only a depth-wise convolution layer
if stride == 1:
return slim.separable_conv2d(inputs, None, kernel_size,
depth_multiplier=1, stride=1, rate=rate,
padding='SAME', scope=scope)
else:
kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
inputs = tf.pad(inputs,
[[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]])
return slim.separable_conv2d(inputs, None, kernel_size,
depth_multiplier=1, stride=stride, rate=rate,
padding='VALID', scope=scope)
# The following is adapted from:
# https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.py
# Conv and DepthSepConv named tuple define layers of the MobileNet architecture
# Conv defines 3x3 convolution layers
# DepthSepConv defines 3x3 depthwise convolution followed by 1x1 convolution.
# stride is the stride of the convolution
# depth is the number of channels or filters in a layer