本文整理汇总了Python中tensorflow.contrib.slim.python.slim.nets.resnet_v1.resnet_v1_block方法的典型用法代码示例。如果您正苦于以下问题:Python resnet_v1.resnet_v1_block方法的具体用法?Python resnet_v1.resnet_v1_block怎么用?Python resnet_v1.resnet_v1_block使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.slim.python.slim.nets.resnet_v1
的用法示例。
在下文中一共展示了resnet_v1.resnet_v1_block方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: restnet_head
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block [as 别名]
def restnet_head(input, is_training, scope_name):
block4 = [resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
with slim.arg_scope(resnet_arg_scope(is_training=is_training)):
C5, _ = resnet_v1.resnet_v1(input,
block4,
global_pool=False,
include_root_block=False,
scope=scope_name)
# C5 = tf.Print(C5, [tf.shape(C5)], summarize=10, message='C5_shape')
C5_flatten = tf.reduce_mean(C5, axis=[1, 2], keep_dims=False, name='global_average_pooling')
# C5_flatten = tf.Print(C5_flatten, [tf.shape(C5_flatten)], summarize=10, message='C5_flatten_shape')
# global average pooling C5 to obtain fc layers
return C5_flatten
示例2: _decide_blocks
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block [as 别名]
def _decide_blocks(self):
# choose different blocks for different number of layers
if self._num_layers == 50:
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
# block 2 use stride 1
resnet_v1_block('block2', base_depth=128, num_units=4, stride=1),
resnet_v1_block('block3', base_depth=256, num_units=6, stride=2),
# use stride 1 for the last conv4 layer
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
elif self._num_layers == 101:
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
# use stride 1 for the last conv4 layer
resnet_v1_block('block3', base_depth=256, num_units=23, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
elif self._num_layers == 152:
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=8, stride=2),
# use stride 1 for the last conv4 layer
resnet_v1_block('block3', base_depth=256, num_units=36, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
else:
# other numbers are not supported
raise NotImplementedError
示例3: _decide_blocks
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block [as 别名]
def _decide_blocks(self):
# choose different blocks for different number of layers
if self._num_layers == 50:
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
# use stride 1 for the last conv4 layer
resnet_v1_block('block3', base_depth=256, num_units=6, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
elif self._num_layers == 101:
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
# use stride 1 for the last conv4 layer
resnet_v1_block('block3', base_depth=256, num_units=23, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
elif self._num_layers == 152:
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=8, stride=2),
# use stride 1 for the last conv4 layer
resnet_v1_block('block3', base_depth=256, num_units=36, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
else:
# other numbers are not supported
raise NotImplementedError
示例4: _decide_blocks
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block [as 别名]
def _decide_blocks(self):
# choose different blocks for different number of layers
if self._num_layers == 50:
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
# use stride 1 for the last conv4 layer
resnet_v1_block('block3', base_depth=256, num_units=6, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
elif self._num_layers == 101:
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
# use stride 1 for the last conv4 layer
resnet_v1_block('block3', base_depth=256, num_units=23, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
elif self._num_layers == 152:
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=8, stride=2),
# use stride 1 for the last conv4 layer
resnet_v1_block('block3', base_depth=256, num_units=36, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
else:
# other numbers are not supported
raise NotImplementedError
示例5: _decide_blocks
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block [as 别名]
def _decide_blocks(self):
# choose different blocks for different number of layers
if self._num_layers == 50:
if tf.__version__ == '1.1.0':
self._blocks = [resnet_utils.Block('block1', resnet_v1.bottleneck,[(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block('block2', resnet_v1.bottleneck,[(512, 128, 1)] * 3 + [(512, 128, 2)]),
resnet_utils.Block('block3', resnet_v1.bottleneck,[(1024, 256, 1)] * 5 + [(1024, 256, 1)]),
resnet_utils.Block('block4', resnet_v1.bottleneck,[(2048, 512, 1)] * 3)]
else:
from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
resnet_v1_block('block3', base_depth=256, num_units=6, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
elif self._num_layers == 101:
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
# use stride 1 for the last conv4 layer
resnet_v1_block('block3', base_depth=256, num_units=23, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
elif self._num_layers == 152:
self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=8, stride=2),
# use stride 1 for the last conv4 layer
resnet_v1_block('block3', base_depth=256, num_units=36, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
else:
# other numbers are not supported
raise NotImplementedError
示例6: __init__
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block [as 别名]
def __init__(self):
self.visualize = {}
self.intermediate = {}
self.predictions = {}
self.score_summaries = {}
self.event_summaries = {}
self.train_summaries = []
self.losses = {}
self.image = tf.placeholder(tf.float32, shape=[1, None, None, 3], name = 'image')
self.spatial = tf.placeholder(tf.float32, shape=[None, 64, 64, 2], name = 'sp')
self.Hsp_boxes = tf.placeholder(tf.float32, shape=[None, 5], name = 'Hsp_boxes')
self.O_boxes = tf.placeholder(tf.float32, shape=[None, 5], name = 'O_boxes')
self.gt_class_H = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_H')
self.gt_class_HO = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_HO')
self.gt_class_sp = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_sp')
self.Mask_HO = tf.placeholder(tf.float32, shape=[None, 29], name = 'HO_mask')
self.Mask_H = tf.placeholder(tf.float32, shape=[None, 29], name = 'H_mask')
self.Mask_sp = tf.placeholder(tf.float32, shape=[None, 29], name = 'sp_mask')
self.H_num = tf.placeholder(tf.int32)
self.num_classes = 29
self.num_fc = 1024
self.scope = 'resnet_v1_50'
self.stride = [16, ]
self.lr = tf.placeholder(tf.float32)
if tf.__version__ == '1.1.0':
self.blocks = [resnet_utils.Block('block1', resnet_v1.bottleneck,[(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block('block2', resnet_v1.bottleneck,[(512, 128, 1)] * 3 + [(512, 128, 2)]),
resnet_utils.Block('block3', resnet_v1.bottleneck,[(1024, 256, 1)] * 5 + [(1024, 256, 1)]),
resnet_utils.Block('block4', resnet_v1.bottleneck,[(2048, 512, 1)] * 3),
resnet_utils.Block('block5', resnet_v1.bottleneck,[(2048, 512, 1)] * 3)]
else:
from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block
self.blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
resnet_v1_block('block3', base_depth=256, num_units=6, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
resnet_v1_block('block5', base_depth=512, num_units=3, stride=1)]
示例7: __init__
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block [as 别名]
def __init__(self):
self.visualize = {}
self.intermediate = {}
self.predictions = {}
self.score_summaries = {}
self.event_summaries = {}
self.train_summaries = []
self.losses = {}
self.image = tf.placeholder(tf.float32, shape=[1, None, None, 3], name = 'image')
self.spatial = tf.placeholder(tf.float32, shape=[None, 64, 64, 2], name = 'sp')
self.H_boxes = tf.placeholder(tf.float32, shape=[None, 5], name = 'H_boxes')
self.O_boxes = tf.placeholder(tf.float32, shape=[None, 5], name = 'O_boxes')
self.gt_class_H = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_H')
self.gt_class_HO = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_HO')
self.Mask_HO = tf.placeholder(tf.float32, shape=[None, 29], name = 'HO_mask')
self.Mask_H = tf.placeholder(tf.float32, shape=[None, 29], name = 'H_mask')
self.H_num = tf.placeholder(tf.int32)
self.num_classes = 29
self.num_fc = 1024
self.scope = 'resnet_v1_50'
self.stride = [16, ]
self.lr = tf.placeholder(tf.float32)
if tf.__version__ == '1.1.0':
self.blocks = [resnet_utils.Block('block1', resnet_v1.bottleneck,[(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block('block2', resnet_v1.bottleneck,[(512, 128, 1)] * 3 + [(512, 128, 2)]),
resnet_utils.Block('block3', resnet_v1.bottleneck,[(1024, 256, 1)] * 5 + [(1024, 256, 1)]),
resnet_utils.Block('block4', resnet_v1.bottleneck,[(2048, 512, 1)] * 3),
resnet_utils.Block('block5', resnet_v1.bottleneck,[(2048, 512, 1)] * 3)]
else:
from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block
self.blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
resnet_v1_block('block3', base_depth=256, num_units=6, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
resnet_v1_block('block5', base_depth=512, num_units=3, stride=1)]
示例8: __init__
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block [as 别名]
def __init__(self):
self.visualize = {}
self.intermediate = {}
self.predictions = {}
self.score_summaries = {}
self.event_summaries = {}
self.train_summaries = []
self.losses = {}
self.image = tf.placeholder(tf.float32, shape=[1, None, None, 3], name = 'image')
self.spatial = tf.placeholder(tf.float32, shape=[None, 64, 64, 2], name = 'sp')
self.H_boxes = tf.placeholder(tf.float32, shape=[None, 5], name = 'H_boxes')
self.O_boxes = tf.placeholder(tf.float32, shape=[None, 5], name = 'O_boxes')
self.gt_class_HO = tf.placeholder(tf.float32, shape=[None, 600], name = 'gt_class_HO')
self.H_num = tf.placeholder(tf.int32)
self.num_classes = 600
self.num_fc = 1024
self.scope = 'resnet_v1_50'
self.stride = [16, ]
self.lr = tf.placeholder(tf.float32)
if tf.__version__ == '1.1.0':
self.blocks = [resnet_utils.Block('block1', resnet_v1.bottleneck,[(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block('block2', resnet_v1.bottleneck,[(512, 128, 1)] * 3 + [(512, 128, 2)]),
resnet_utils.Block('block3', resnet_v1.bottleneck,[(1024, 256, 1)] * 5 + [(1024, 256, 1)]),
resnet_utils.Block('block4', resnet_v1.bottleneck,[(2048, 512, 1)] * 3),
resnet_utils.Block('block5', resnet_v1.bottleneck,[(2048, 512, 1)] * 3)]
else:
from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block
self.blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
resnet_v1_block('block3', base_depth=256, num_units=6, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
resnet_v1_block('block5', base_depth=512, num_units=3, stride=1)]
示例9: resnet_base
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block [as 别名]
def resnet_base(img_batch, scope_name, is_training=True):
'''
this code is derived from light-head rcnn.
https://github.com/zengarden/light_head_rcnn
It is convenient to freeze blocks. So we adapt this mode.
'''
if scope_name == 'resnet_v1_50':
middle_num_units = 6
elif scope_name == 'resnet_v1_101':
middle_num_units = 23
else:
raise NotImplementedError('We only support resnet_v1_50 or resnet_v1_101. Check your network name....yjr')
blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
# use stride 1 for the last conv4 layer.
resnet_v1_block('block3', base_depth=256, num_units=middle_num_units, stride=1)]
# when use fpn . stride list is [1, 2, 2]
with slim.arg_scope(resnet_arg_scope(is_training=False)):
with tf.variable_scope(scope_name, scope_name):
# Do the first few layers manually, because 'SAME' padding can behave inconsistently
# for images of different sizes: sometimes 0, sometimes 1
net = resnet_utils.conv2d_same(
img_batch, 64, 7, stride=2, scope='conv1')
net = tf.pad(net, [[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.max_pool2d(
net, [3, 3], stride=2, padding='VALID', scope='pool1')
not_freezed = [False] * cfgs.FIXED_BLOCKS + (4-cfgs.FIXED_BLOCKS)*[True]
# Fixed_Blocks can be 1~3
with slim.arg_scope(resnet_arg_scope(is_training=(is_training and not_freezed[0]))):
C2, _ = resnet_v1.resnet_v1(net,
blocks[0:1],
global_pool=False,
include_root_block=False,
scope=scope_name)
# C2 = tf.Print(C2, [tf.shape(C2)], summarize=10, message='C2_shape')
with slim.arg_scope(resnet_arg_scope(is_training=(is_training and not_freezed[1]))):
C3, _ = resnet_v1.resnet_v1(C2,
blocks[1:2],
global_pool=False,
include_root_block=False,
scope=scope_name)
# C3 = tf.Print(C3, [tf.shape(C3)], summarize=10, message='C3_shape')
with slim.arg_scope(resnet_arg_scope(is_training=(is_training and not_freezed[2]))):
C4, _ = resnet_v1.resnet_v1(C3,
blocks[2:3],
global_pool=False,
include_root_block=False,
scope=scope_name)
# C4 = tf.Print(C4, [tf.shape(C4)], summarize=10, message='C4_shape')
return C4
示例10: __init__
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block [as 别名]
def __init__(self):
self.visualize = {}
self.intermediate = {}
self.predictions = {}
self.score_summaries = {}
self.event_summaries = {}
self.train_summaries = []
self.losses = {}
self.image = tf.placeholder(tf.float32, shape=[1, None, None, 3], name = 'image')
self.spatial = tf.placeholder(tf.float32, shape=[None, 64, 64, 3], name = 'sp') # Pattern.reshape( num_pos_neg, 64, 64, 3)
self.Hsp_boxes = tf.placeholder(tf.float32, shape=[None, 5], name = 'Hsp_boxes')
self.O_boxes = tf.placeholder(tf.float32, shape=[None, 5], name = 'O_boxes') #Object_augmented[:num_pos].reshape(num_pos, 5)
self.gt_class_H = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_H')
self.gt_class_HO = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_HO')
self.gt_class_sp = tf.placeholder(tf.float32, shape=[None, 29], name = 'gt_class_sp')
self.Mask_HO = tf.placeholder(tf.float32, shape=[None, 29], name = 'HO_mask')
self.Mask_H = tf.placeholder(tf.float32, shape=[None, 29], name = 'H_mask')
self.Mask_sp = tf.placeholder(tf.float32, shape=[None, 29], name = 'sp_mask')
self.gt_binary_label = tf.placeholder(tf.float32, shape=[None, 2], name = 'gt_binary_label')
self.H_num = tf.placeholder(tf.int32)
self.HO_weight = np.array([3.3510249, 3.4552405, 4.0257854, 0.0, 4.088436,
3.4370995, 3.85842, 4.637334, 3.5487218, 3.536237,
2.5578923, 3.342811, 3.8897269, 4.70686, 3.3952892,
3.9706533, 4.504736, 0.0, 1.4873443, 3.700363,
4.1058283, 3.6298118, 0.0, 6.490651, 5.0808263,
1.520838, 3.3888445, 0.0, 3.9899964], dtype = 'float32').reshape(1,29)
self.H_weight = np.array([4.0984106, 4.102459, 4.0414762, 4.060745, 4.0414762,
3.9768186, 4.23686, 5.3542085, 3.723717, 3.4699364,
2.4587274, 3.7167964, 4.08836, 5.050695, 3.9077065,
4.534647, 3.4699364, 2.9466882, 1.8585607, 3.9433942,
3.9433942, 4.3523254, 3.8368235, 6.4963055, 5.138182,
1.7807873, 4.080392, 1.9544303, 4.5761204],dtype = 'float32').reshape(1,29)
self.binary_weight = np.array([1.0986122886681098, 0.4054651081081644], dtype = 'float32').reshape(1,2)
self.num_classes = 29
self.num_binary = 2 # existence (0 or 1) of HOI
self.num_fc = 1024
self.scope = 'resnet_v1_50'
self.stride = [16, ]
self.lr = tf.placeholder(tf.float32)
if tf.__version__ == '1.1.0':
self.blocks = [resnet_utils.Block('block1', resnet_v1.bottleneck,[(256, 64, 1)] * 2 + [(256, 64, 2)]),
resnet_utils.Block('block2', resnet_v1.bottleneck,[(512, 128, 1)] * 3 + [(512, 128, 2)]),
resnet_utils.Block('block3', resnet_v1.bottleneck,[(1024, 256, 1)] * 5 + [(1024, 256, 1)]),
resnet_utils.Block('block4', resnet_v1.bottleneck,[(2048, 512, 1)] * 3),
resnet_utils.Block('block5', resnet_v1.bottleneck,[(2048, 512, 1)] * 3)]
else:
from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block
self.blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
resnet_v1_block('block3', base_depth=256, num_units=6, stride=1),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
resnet_v1_block('block5', base_depth=512, num_units=3, stride=1)]