本文整理汇总了Python中tensorflow.contrib.slim.python.slim.nets.resnet_utils.conv2d_same方法的典型用法代码示例。如果您正苦于以下问题:Python resnet_utils.conv2d_same方法的具体用法?Python resnet_utils.conv2d_same怎么用?Python resnet_utils.conv2d_same使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.slim.python.slim.nets.resnet_utils
的用法示例。
在下文中一共展示了resnet_utils.conv2d_same方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testConv2DSameEven
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def testConv2DSameEven(self):
n, n2 = 4, 2
# Input image.
x = create_test_input(1, n, n, 1)
# Convolution kernel.
w = create_test_input(1, 3, 3, 1)
w = array_ops.reshape(w, [3, 3, 1, 1])
variable_scope.get_variable('Conv/weights', initializer=w)
variable_scope.get_variable('Conv/biases', initializer=array_ops.zeros([1]))
variable_scope.get_variable_scope().reuse_variables()
y1 = layers.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
y1_expected = math_ops.to_float([[14, 28, 43, 26], [28, 48, 66, 37],
[43, 66, 84, 46], [26, 37, 46, 22]])
y1_expected = array_ops.reshape(y1_expected, [1, n, n, 1])
y2 = resnet_utils.subsample(y1, 2)
y2_expected = math_ops.to_float([[14, 43], [43, 84]])
y2_expected = array_ops.reshape(y2_expected, [1, n2, n2, 1])
y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
y3_expected = y2_expected
y4 = layers.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
y4_expected = math_ops.to_float([[48, 37], [37, 22]])
y4_expected = array_ops.reshape(y4_expected, [1, n2, n2, 1])
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
self.assertAllClose(y1.eval(), y1_expected.eval())
self.assertAllClose(y2.eval(), y2_expected.eval())
self.assertAllClose(y3.eval(), y3_expected.eval())
self.assertAllClose(y4.eval(), y4_expected.eval())
示例2: testConv2DSameOdd
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def testConv2DSameOdd(self):
n, n2 = 5, 3
# Input image.
x = create_test_input(1, n, n, 1)
# Convolution kernel.
w = create_test_input(1, 3, 3, 1)
w = array_ops.reshape(w, [3, 3, 1, 1])
variable_scope.get_variable('Conv/weights', initializer=w)
variable_scope.get_variable('Conv/biases', initializer=array_ops.zeros([1]))
variable_scope.get_variable_scope().reuse_variables()
y1 = layers.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
y1_expected = math_ops.to_float([[14, 28, 43, 58, 34],
[28, 48, 66, 84, 46],
[43, 66, 84, 102, 55],
[58, 84, 102, 120, 64],
[34, 46, 55, 64, 30]])
y1_expected = array_ops.reshape(y1_expected, [1, n, n, 1])
y2 = resnet_utils.subsample(y1, 2)
y2_expected = math_ops.to_float([[14, 43, 34],
[43, 84, 55],
[34, 55, 30]])
y2_expected = array_ops.reshape(y2_expected, [1, n2, n2, 1])
y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
y3_expected = y2_expected
y4 = layers.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
y4_expected = y2_expected
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
self.assertAllClose(y1.eval(), y1_expected.eval())
self.assertAllClose(y2.eval(), y2_expected.eval())
self.assertAllClose(y3.eval(), y3_expected.eval())
self.assertAllClose(y4.eval(), y4_expected.eval())
示例3: testConv2DSameOdd
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def testConv2DSameOdd(self):
n, n2 = 5, 3
# Input image.
x = create_test_input(1, n, n, 1)
# Convolution kernel.
w = create_test_input(1, 3, 3, 1)
w = array_ops.reshape(w, [3, 3, 1, 1])
variable_scope.get_variable('Conv/weights', initializer=w)
variable_scope.get_variable('Conv/biases', initializer=array_ops.zeros([1]))
variable_scope.get_variable_scope().reuse_variables()
y1 = layers.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
y1_expected = math_ops.to_float([[14, 28, 43, 58, 34], [28, 48, 66, 84, 46],
[43, 66, 84, 102, 55],
[58, 84, 102, 120, 64],
[34, 46, 55, 64, 30]])
y1_expected = array_ops.reshape(y1_expected, [1, n, n, 1])
y2 = resnet_utils.subsample(y1, 2)
y2_expected = math_ops.to_float([[14, 43, 34], [43, 84, 55], [34, 55, 30]])
y2_expected = array_ops.reshape(y2_expected, [1, n2, n2, 1])
y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
y3_expected = y2_expected
y4 = layers.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
y4_expected = y2_expected
with self.test_session() as sess:
sess.run(variables.global_variables_initializer())
self.assertAllClose(y1.eval(), y1_expected.eval())
self.assertAllClose(y2.eval(), y2_expected.eval())
self.assertAllClose(y3.eval(), y3_expected.eval())
self.assertAllClose(y4.eval(), y4_expected.eval())
示例4: _build_base
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def _build_base(self):
with tf.variable_scope(self._scope, self._scope):
net = resnet_utils.conv2d_same(self._image, 64, 7, stride=2, scope='conv1')
net = tf.pad(net, [[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='pool1')
return net
示例5: _build_base
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def _build_base(self):
with tf.variable_scope(self._resnet_scope):
net = resnet_utils.conv2d_same(self._image, 64, 7, stride=2, scope='conv1')
net = tf.pad(net, [[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='pool1')
return net
示例6: build_base
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def build_base(self):
#with tf.variable_scope('noise'):
##kernel = tf.get_variable('weights',
#shape=[5, 5, 3, 3],
#initializer=tf.constant_initializer(Wcnn))
#conv = tf.nn.conv2d(self.noise, Wcnn, [1, 1, 1, 1], padding='SAME',name='srm')
#conv = tf.nn.conv2d(self.noise, kernel, [1, 1, 1, 1], padding='SAME',name='srm')
#srm_conv = tf.nn.tanh(conv, name='tanh')
with tf.variable_scope(self._resnet_scope, self._resnet_scope):
net = resnet_utils.conv2d_same(self._image, 64, 7, stride=2, scope='conv1')
net = tf.pad(net, [[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='pool1')
return net
示例7: build_base
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def build_base(self):
with tf.variable_scope(self._resnet_scope, self._resnet_scope):
net = resnet_utils.conv2d_same(self._image, 64, 7, stride=2, scope='conv1')
net = tf.pad(net, [[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='pool1')
return net
示例8: _build_base
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def _build_base(self):
with tf.variable_scope(self._scope, self._scope):
net = resnet_utils.conv2d_same(self._image, 64, 7, stride=2, scope='conv1')
net = tf.pad(net, [[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='pool1')
return net
示例9: build_base
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def build_base(self):
with tf.variable_scope(self.scope, self.scope):
net = resnet_utils.conv2d_same(self.image, 64, 7, stride=2, scope='conv1')
net = tf.pad(net, [[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='pool1')
return net
示例10: build_base
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def build_base(self):
with tf.variable_scope(self.scope, self.scope):
net = resnet_utils.conv2d_same(self.image, 64, 7, stride=2, scope='conv1') # conv2d + subsample
net = tf.pad(net, [[0, 0], [1, 1], [1, 1], [0, 0]])
net = slim.max_pool2d(net, [3, 3], stride=2, padding='VALID', scope='pool1')
return net
# Number of fixed blocks during training, by default ***the first of all 4 blocks*** is fixed (Resnet-50 block)
# Range: 0 (none) to 3 (all)
# __C.RESNET.FIXED_BLOCKS = 1
# feature extractor
示例11: resnet_v1_backbone
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def resnet_v1_backbone(inputs,
blocks,
is_training=True,
output_stride=None,
include_root_block=True,
reuse=None,
scope=None):
with variable_scope.variable_scope(
scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
end_points_collection = sc.original_name_scope + '_end_points'
with arg_scope(
[layers.conv2d, bottleneck, resnet_utils.stack_blocks_dense],
outputs_collections=end_points_collection):
with arg_scope([layers.batch_norm], is_training=is_training):
net = inputs
if include_root_block:
if output_stride is not None:
if output_stride % 4 != 0:
raise ValueError('The output_stride needs to be a multiple of 4.')
output_stride /= 4
net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
net = layers_lib.max_pool2d(net, [3, 3], stride=2, scope='pool1')
net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)
# Convert end_points_collection into a dictionary of end_points.
end_points = utils.convert_collection_to_dict(end_points_collection)
return net, end_points
示例12: bottleneck
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def bottleneck(inputs,
depth,
depth_bottleneck,
stride,
rate=1,
outputs_collections=None,
scope=None):
"""Bottleneck residual unit variant with BN after convolutions.
This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
its definition. Note that we use here the bottleneck variant which has an
extra bottleneck layer.
When putting together two consecutive ResNet blocks that use this unit, one
should use stride = 2 in the last unit of the first block.
Args:
inputs: A tensor of size [batch, height, width, channels].
depth: The depth of the ResNet unit output.
depth_bottleneck: The depth of the bottleneck layers.
stride: The ResNet unit's stride. Determines the amount of downsampling of
the units output compared to its input.
rate: An integer, rate for atrous convolution.
outputs_collections: Collection to add the ResNet unit output.
scope: Optional variable_scope.
Returns:
The ResNet unit's output.
"""
with variable_scope.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = layers.conv2d(
inputs,
depth, [1, 1],
stride=stride,
activation_fn=None,
scope='shortcut')
residual = layers.conv2d(
inputs, depth_bottleneck, [1, 1], stride=1, scope='conv1')
residual = resnet_utils.conv2d_same(
residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
residual = layers.conv2d(
residual, depth, [1, 1], stride=1, activation_fn=None, scope='conv3')
output = nn_ops.relu(shortcut + residual)
return utils.collect_named_outputs(outputs_collections, sc.name, output)
示例13: bottleneck
# 需要导入模块: from tensorflow.contrib.slim.python.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.nets.resnet_utils import conv2d_same [as 别名]
def bottleneck(inputs,
depth,
depth_bottleneck,
stride,
rate=1,
outputs_collections=None,
scope=None):
"""Bottleneck residual unit variant with BN before convolutions.
This is the full preactivation residual unit variant proposed in [2]. See
Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
variant which has an extra bottleneck layer.
When putting together two consecutive ResNet blocks that use this unit, one
should use stride = 2 in the last unit of the first block.
Args:
inputs: A tensor of size [batch, height, width, channels].
depth: The depth of the ResNet unit output.
depth_bottleneck: The depth of the bottleneck layers.
stride: The ResNet unit's stride. Determines the amount of downsampling of
the units output compared to its input.
rate: An integer, rate for atrous convolution.
outputs_collections: Collection to add the ResNet unit output.
scope: Optional variable_scope.
Returns:
The ResNet unit's output.
"""
with variable_scope.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
preact = layers.batch_norm(
inputs, activation_fn=nn_ops.relu, scope='preact')
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = layers_lib.conv2d(
preact,
depth, [1, 1],
stride=stride,
normalizer_fn=None,
activation_fn=None,
scope='shortcut')
residual = layers_lib.conv2d(
preact, depth_bottleneck, [1, 1], stride=1, scope='conv1')
residual = resnet_utils.conv2d_same(
residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
residual = layers_lib.conv2d(
residual,
depth, [1, 1],
stride=1,
normalizer_fn=None,
activation_fn=None,
scope='conv3')
output = shortcut + residual
return utils.collect_named_outputs(outputs_collections, sc.name, output)