当前位置: 首页>>代码示例>>Python>>正文


Python dataset.Dataset方法代码示例

本文整理汇总了Python中tensorflow.contrib.slim.python.slim.data.dataset.Dataset方法的典型用法代码示例。如果您正苦于以下问题:Python dataset.Dataset方法的具体用法?Python dataset.Dataset怎么用?Python dataset.Dataset使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.slim.python.slim.data.dataset的用法示例。


在下文中一共展示了dataset.Dataset方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _create_tfrecord_dataset

# 需要导入模块: from tensorflow.contrib.slim.python.slim.data import dataset [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.data.dataset import Dataset [as 别名]
def _create_tfrecord_dataset(tmpdir):
  if not gfile.Exists(tmpdir):
    gfile.MakeDirs(tmpdir)

  data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1)

  keys_to_features = {
      'image/encoded':
          parsing_ops.FixedLenFeature(
              shape=(), dtype=dtypes.string, default_value=''),
      'image/format':
          parsing_ops.FixedLenFeature(
              shape=(), dtype=dtypes.string, default_value='jpeg'),
      'image/class/label':
          parsing_ops.FixedLenFeature(
              shape=[1],
              dtype=dtypes.int64,
              default_value=array_ops.zeros(
                  [1], dtype=dtypes.int64))
  }

  items_to_handlers = {
      'image': tfexample_decoder.Image(),
      'label': tfexample_decoder.Tensor('image/class/label'),
  }

  decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                               items_to_handlers)

  return dataset.Dataset(
      data_sources=data_sources,
      reader=io_ops.TFRecordReader,
      decoder=decoder,
      num_samples=100,
      items_to_descriptions=None) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:37,代码来源:dataset_data_provider_test.py

示例2: _get_split

# 需要导入模块: from tensorflow.contrib.slim.python.slim.data import dataset [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.data.dataset import Dataset [as 别名]
def _get_split(file_pattern, num_samples, num_views, image_size, vox_size):
  """Get dataset.Dataset for the given dataset file pattern and properties."""

  # A dictionary from TF-Example keys to tf.FixedLenFeature instance.
  keys_to_features = {
      'image': tf.FixedLenFeature(
          shape=[num_views, image_size, image_size, 3],
          dtype=tf.float32, default_value=None),
      'mask': tf.FixedLenFeature(
          shape=[num_views, image_size, image_size, 1],
          dtype=tf.float32, default_value=None),
      'vox': tf.FixedLenFeature(
          shape=[vox_size, vox_size, vox_size, 1],
          dtype=tf.float32, default_value=None),
  }

  items_to_handler = {
      'image': tfexample_decoder.Tensor(
          'image', shape=[num_views, image_size, image_size, 3]),
      'mask': tfexample_decoder.Tensor(
          'mask', shape=[num_views, image_size, image_size, 1]),
      'vox': tfexample_decoder.Tensor(
          'vox', shape=[vox_size, vox_size, vox_size, 1])
  }

  decoder = tfexample_decoder.TFExampleDecoder(
      keys_to_features, items_to_handler)

  return dataset.Dataset(
      data_sources=file_pattern,
      reader=tf.TFRecordReader,
      decoder=decoder,
      num_samples=num_samples,
      items_to_descriptions=_ITEMS_TO_DESCRIPTIONS) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:36,代码来源:input_generator.py

示例3: get_split

# 需要导入模块: from tensorflow.contrib.slim.python.slim.data import dataset [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.data.dataset import Dataset [as 别名]
def get_split(split_name, dataset_dir=None):
  """Gets a dataset tuple with instructions for reading cifar100.

  Args:
    split_name: A train/test split name.
    dataset_dir: The base directory of the dataset sources.

  Returns:
    A `Dataset` namedtuple. Image tensors are integers in [0, 255].

  Raises:
    ValueError: if `split_name` is not a valid train/test split.
  """
  if split_name not in _SPLITS_TO_SIZES:
    raise ValueError('split name %s was not recognized.' % split_name)

  file_pattern = os.path.join(dataset_dir, _FILE_PATTERN % split_name)

  keys_to_features = {
      'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
      'image/format': tf.FixedLenFeature((), tf.string, default_value=''),
      'image/class/fine_label': tf.FixedLenFeature(
          [1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
      'image/class/coarse_label': tf.FixedLenFeature(
          [1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
  }

  items_to_handlers = {
      'image': tfexample_decoder.Image(shape=[32, 32, 3]),
      'fine_label': tfexample_decoder.Tensor('image/class/fine_label'),
      'coarse_label': tfexample_decoder.Tensor('image/class/coarse_label'),
  }

  decoder = tfexample_decoder.TFExampleDecoder(
      keys_to_features, items_to_handlers)

  return dataset.Dataset(
      data_sources=file_pattern,
      reader=tf.TFRecordReader,
      decoder=decoder,
      num_samples=_SPLITS_TO_SIZES[split_name],
      num_classes=_NUM_CLASSES,
      items_to_descriptions=_ITEMS_TO_DESCRIPTIONS) 
开发者ID:google,项目名称:mentornet,代码行数:45,代码来源:cifar100_dataset.py

示例4: get_split

# 需要导入模块: from tensorflow.contrib.slim.python.slim.data import dataset [as 别名]
# 或者: from tensorflow.contrib.slim.python.slim.data.dataset import Dataset [as 别名]
def get_split(split_name, dataset_dir=None):
  """Gets a dataset tuple with instructions for reading cifar10.

  Args:
    split_name: A train/test split name.
    dataset_dir: The base directory of the dataset sources.

  Returns:
    A `Dataset` namedtuple. Image tensors are integers in [0, 255].

  Raises:
    ValueError: if `split_name` is not a valid train/test split.
  """
  if split_name not in _SPLITS_TO_SIZES:
    raise ValueError('split name %s was not recognized.' % split_name)

  if dataset_dir is None:
    dataset_dir = _DATASET_DIR

  file_pattern = os.path.join(dataset_dir, _FILE_PATTERN % split_name)

  keys_to_features = {
      'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
      'image/format': tf.FixedLenFeature((), tf.string, default_value=''),
      'image/class/label': tf.FixedLenFeature(
          [1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
  }

  items_to_handlers = {
      'image': tfexample_decoder.Image(shape=[32, 32, 3]),
      'label': tfexample_decoder.Tensor('image/class/label'),
  }

  decoder = tfexample_decoder.TFExampleDecoder(
      keys_to_features, items_to_handlers)

  return dataset.Dataset(
      data_sources=file_pattern,
      reader=tf.TFRecordReader,
      decoder=decoder,
      num_samples=_SPLITS_TO_SIZES[split_name],
      num_classes=_NUM_CLASSES,
      items_to_descriptions=_ITEMS_TO_DESCRIPTIONS) 
开发者ID:google,项目名称:mentornet,代码行数:45,代码来源:cifar10_dataset.py


注:本文中的tensorflow.contrib.slim.python.slim.data.dataset.Dataset方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。