本文整理汇总了Python中tensorflow.contrib.slim.nets.resnet_v1.resnet_arg_scope方法的典型用法代码示例。如果您正苦于以下问题:Python resnet_v1.resnet_arg_scope方法的具体用法?Python resnet_v1.resnet_arg_scope怎么用?Python resnet_v1.resnet_arg_scope使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.slim.nets.resnet_v1
的用法示例。
在下文中一共展示了resnet_v1.resnet_arg_scope方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: forward
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_arg_scope [as 别名]
def forward(self, inputs, num_classes, data_format, is_training):
sc = resnet_arg_scope(
weight_decay=0.0001,
data_format=data_format,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True,
activation_fn=tf.nn.relu,
use_batch_norm=True,
is_training=is_training)
with slim.arg_scope(sc):
logits, end_points = resnet_v1_50(
inputs,
num_classes=num_classes,
is_training=is_training,
global_pool=True,
output_stride=None,
reuse=None,
scope=self.scope)
return logits, end_points
示例2: setUp
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_arg_scope [as 别名]
def setUp(self):
tf.reset_default_graph()
self.nbclasses = 1000
inputs = tf.placeholder(tf.float32, [1, 224, 224, 3])
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
net, end_points = resnet_v1.resnet_v1_50(inputs, self.nbclasses, is_training=False)
saver = tf.train.Saver(tf.global_variables())
check_point = 'test/data/resnet_v1_50.ckpt'
sess = tf.InteractiveSession()
saver.restore(sess, check_point)
conv_name = 'resnet_v1_50/block4/unit_3/bottleneck_v1/Relu'
self.graph_origin = tf.get_default_graph().as_graph_def()
self.insp = darkon.Gradcam(inputs, self.nbclasses, conv_name)
self.sess = sess
示例3: extract_features
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_arg_scope [as 别名]
def extract_features(self, inputs):
net_fun = net_funcs[self.cfg.net_type]
mean = tf.constant(
self.cfg.mean_pixel, dtype=tf.float32, shape=[1, 1, 1, 3], name="img_mean"
)
im_centered = inputs - mean
# The next part of the code depends upon which tensorflow version you have.
vers = tf.__version__
vers = vers.split(
"."
) # Updated based on https://github.com/AlexEMG/DeepLabCut/issues/44
if int(vers[0]) == 1 and int(vers[1]) < 4: # check if lower than version 1.4.
with slim.arg_scope(resnet_v1.resnet_arg_scope(False)):
net, end_points = net_fun(
im_centered, global_pool=False, output_stride=16
)
else:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
net, end_points = net_fun(
im_centered, global_pool=False, output_stride=16, is_training=False
)
return net, end_points
示例4: resnet_v1_101_c4
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_arg_scope [as 别名]
def resnet_v1_101_c4(inputs, is_training, reuse=None, scope='resnet_v1_101'):
"""
ResNet-101 model of [1]. See resnet_v1() for arg and return description.
"""
with slim.arg_scope(resnet_arg_scope()):
blocks = [
resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
# Use stride = 1 to extract 14 x 14 feature. The stride is applied
# in the last unit of the block, followed by 1x1 convolution, so
# changing the stride to 2 only makes the sampling denser.
resnet_v1_block('block3', base_depth=256, num_units=23, stride=1),
]
net, _ = resnet_v1(
inputs, blocks, num_classes=None, is_training=is_training,
global_pool=False, output_stride=None,
include_root_block=True, spatial_squeeze=True,
reuse=reuse, scope=scope)
return net
示例5: resnet_v1_152_c5
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_arg_scope [as 别名]
def resnet_v1_152_c5(inputs, is_training, reuse=None, scope='resnet_v1_152'):
"""
ResNet-152 model of [1]. See resnet_v1() for arg and return description.
"""
with slim.arg_scope(resnet_arg_scope()):
blocks = [
resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
resnet_v1_block('block2', base_depth=128, num_units=8, stride=2),
resnet_v1_block('block3', base_depth=256, num_units=36, stride=2),
resnet_v1_block('block4', base_depth=512, num_units=3, stride=1),
]
net, _ = resnet_v1(
inputs, blocks, num_classes=None, is_training=is_training,
global_pool=False, output_stride=None,
include_root_block=True, spatial_squeeze=True,
reuse=reuse, scope=scope)
return net
示例6: det_lesion_resnet
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_arg_scope [as 别名]
def det_lesion_resnet(inputs, is_training_option=False, scope='det_lesion'):
"""Defines the network
Args:
inputs: Tensorflow placeholder that contains the input image
scope: Scope name for the network
Returns:
net: Output Tensor of the network
end_points: Dictionary with all Tensors of the network
"""
with tf.variable_scope(scope, 'det_lesion', [inputs]) as sc:
end_points_collection = sc.name + '_end_points'
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
net, end_points = resnet_v1.resnet_v1_50(inputs, is_training=is_training_option)
net = slim.flatten(net, scope='flatten5')
net = slim.fully_connected(net, 1, activation_fn=tf.nn.sigmoid,
weights_initializer=initializers.xavier_initializer(), scope='output')
utils.collect_named_outputs(end_points_collection, 'det_lesion/output', net)
end_points = slim.utils.convert_collection_to_dict(end_points_collection)
return net, end_points
示例7: test_resnet
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_arg_scope [as 别名]
def test_resnet(self):
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
net, end_points = resnet_v1.resnet_v1_50(self.inputs, self.nbclasses, is_training=False)
saver = tf.train.Saver(tf.global_variables())
check_point = 'test/data/resnet_v1_50.ckpt'
sess = tf.InteractiveSession()
saver.restore(sess, check_point)
self.sess = sess
self.graph_origin = tf.get_default_graph()
self.target_op_name = darkon.Gradcam.candidate_featuremap_op_names(sess, self.graph_origin)[-1]
self.model_name = 'resnet'
self.assertEqual('resnet_v1_50/block4/unit_3/bottleneck_v1/Relu', self.target_op_name)
示例8: build_graph
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_v1 [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_v1 import resnet_arg_scope [as 别名]
def build_graph(self, orig_image):
mean = tf.get_variable('resnet_v1_50/mean_rgb', shape=[3])
with guided_relu():
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
image = tf.expand_dims(orig_image - mean, 0)
logits, _ = resnet_v1.resnet_v1_50(image, 1000, is_training=False)
saliency_map(logits, orig_image, name="saliency")