本文整理汇总了Python中tensorflow.contrib.slim.nets.resnet_utils.subsample方法的典型用法代码示例。如果您正苦于以下问题:Python resnet_utils.subsample方法的具体用法?Python resnet_utils.subsample怎么用?Python resnet_utils.subsample使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.slim.nets.resnet_utils
的用法示例。
在下文中一共展示了resnet_utils.subsample方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testAtrousFullyConvolutionalValues
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def testAtrousFullyConvolutionalValues(self):
"""Verify dense feature extraction with atrous convolution."""
nominal_stride = 32
for output_stride in [4, 8, 16, 32, None]:
with slim.arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
with tf.Graph().as_default():
with self.test_session() as sess:
tf.set_random_seed(0)
inputs = create_test_input(2, 81, 81, 3)
# Dense feature extraction followed by subsampling.
output, _ = self._resnet_small(inputs, None, global_pool=False,
output_stride=output_stride)
if output_stride is None:
factor = 1
else:
factor = nominal_stride // output_stride
output = resnet_utils.subsample(output, factor)
# Make the two networks use the same weights.
tf.get_variable_scope().reuse_variables()
# Feature extraction at the nominal network rate.
expected, _ = self._resnet_small(inputs, None, global_pool=False)
sess.run(tf.global_variables_initializer())
self.assertAllClose(output.eval(), expected.eval(),
atol=1e-4, rtol=1e-4)
示例2: testAtrousFullyConvolutionalValues
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def testAtrousFullyConvolutionalValues(self):
"""Verify dense feature extraction with atrous convolution."""
nominal_stride = 32
for output_stride in [4, 8, 16, 32, None]:
with slim.arg_scope(xception.xception_arg_scope()):
with tf.Graph().as_default():
with self.test_session() as sess:
tf.set_random_seed(0)
inputs = create_test_input(2, 96, 97, 3)
# Dense feature extraction followed by subsampling.
output, _ = self._xception_small(
inputs,
None,
is_training=False,
global_pool=False,
output_stride=output_stride)
if output_stride is None:
factor = 1
else:
factor = nominal_stride // output_stride
output = resnet_utils.subsample(output, factor)
# Make the two networks use the same weights.
tf.get_variable_scope().reuse_variables()
# Feature extraction at the nominal network rate.
expected, _ = self._xception_small(
inputs,
None,
is_training=False,
global_pool=False)
sess.run(tf.global_variables_initializer())
self.assertAllClose(output.eval(), expected.eval(),
atol=1e-5, rtol=1e-5)
示例3: testSubsampleThreeByThree
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def testSubsampleThreeByThree(self):
x = tf.reshape(tf.to_float(tf.range(9)), [1, 3, 3, 1])
x = resnet_utils.subsample(x, 2)
expected = tf.reshape(tf.constant([0, 2, 6, 8]), [1, 2, 2, 1])
with self.test_session():
self.assertAllClose(x.eval(), expected.eval())
示例4: testSubsampleFourByFour
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def testSubsampleFourByFour(self):
x = tf.reshape(tf.to_float(tf.range(16)), [1, 4, 4, 1])
x = resnet_utils.subsample(x, 2)
expected = tf.reshape(tf.constant([0, 2, 8, 10]), [1, 2, 2, 1])
with self.test_session():
self.assertAllClose(x.eval(), expected.eval())
示例5: testConv2DSameEven
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def testConv2DSameEven(self):
n, n2 = 4, 2
# Input image.
x = create_test_input(1, n, n, 1)
# Convolution kernel.
w = create_test_input(1, 3, 3, 1)
w = tf.reshape(w, [3, 3, 1, 1])
tf.get_variable('Conv/weights', initializer=w)
tf.get_variable('Conv/biases', initializer=tf.zeros([1]))
tf.get_variable_scope().reuse_variables()
y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
y1_expected = tf.to_float([[14, 28, 43, 26],
[28, 48, 66, 37],
[43, 66, 84, 46],
[26, 37, 46, 22]])
y1_expected = tf.reshape(y1_expected, [1, n, n, 1])
y2 = resnet_utils.subsample(y1, 2)
y2_expected = tf.to_float([[14, 43],
[43, 84]])
y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1])
y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
y3_expected = y2_expected
y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
y4_expected = tf.to_float([[48, 37],
[37, 22]])
y4_expected = tf.reshape(y4_expected, [1, n2, n2, 1])
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
self.assertAllClose(y1.eval(), y1_expected.eval())
self.assertAllClose(y2.eval(), y2_expected.eval())
self.assertAllClose(y3.eval(), y3_expected.eval())
self.assertAllClose(y4.eval(), y4_expected.eval())
示例6: testConv2DSameOdd
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def testConv2DSameOdd(self):
n, n2 = 5, 3
# Input image.
x = create_test_input(1, n, n, 1)
# Convolution kernel.
w = create_test_input(1, 3, 3, 1)
w = tf.reshape(w, [3, 3, 1, 1])
tf.get_variable('Conv/weights', initializer=w)
tf.get_variable('Conv/biases', initializer=tf.zeros([1]))
tf.get_variable_scope().reuse_variables()
y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv')
y1_expected = tf.to_float([[14, 28, 43, 58, 34],
[28, 48, 66, 84, 46],
[43, 66, 84, 102, 55],
[58, 84, 102, 120, 64],
[34, 46, 55, 64, 30]])
y1_expected = tf.reshape(y1_expected, [1, n, n, 1])
y2 = resnet_utils.subsample(y1, 2)
y2_expected = tf.to_float([[14, 43, 34],
[43, 84, 55],
[34, 55, 30]])
y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1])
y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv')
y3_expected = y2_expected
y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv')
y4_expected = y2_expected
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
self.assertAllClose(y1.eval(), y1_expected.eval())
self.assertAllClose(y2.eval(), y2_expected.eval())
self.assertAllClose(y3.eval(), y3_expected.eval())
self.assertAllClose(y4.eval(), y4_expected.eval())
示例7: testAtrousFullyConvolutionalValues
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def testAtrousFullyConvolutionalValues(self):
"""Verify dense feature extraction with atrous convolution."""
nominal_stride = 32
for output_stride in [4, 8, 16, 32, None]:
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
with tf.Graph().as_default():
with self.test_session() as sess:
tf.set_random_seed(0)
inputs = create_test_input(2, 81, 81, 3)
# Dense feature extraction followed by subsampling.
output, _ = self._resnet_small(inputs,
None,
is_training=False,
global_pool=False,
output_stride=output_stride)
if output_stride is None:
factor = 1
else:
factor = nominal_stride // output_stride
output = resnet_utils.subsample(output, factor)
# Make the two networks use the same weights.
tf.get_variable_scope().reuse_variables()
# Feature extraction at the nominal network rate.
expected, _ = self._resnet_small(inputs,
None,
is_training=False,
global_pool=False)
sess.run(tf.global_variables_initializer())
self.assertAllClose(output.eval(), expected.eval(),
atol=1e-4, rtol=1e-4)
示例8: testSeparableConv2DSameWithInputEvenSize
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def testSeparableConv2DSameWithInputEvenSize(self):
n, n2 = 4, 2
# Input image.
x = create_test_input(1, n, n, 1)
# Convolution kernel.
dw = create_test_input(1, 3, 3, 1)
dw = tf.reshape(dw, [3, 3, 1, 1])
tf.get_variable('Conv/depthwise_weights', initializer=dw)
tf.get_variable('Conv/pointwise_weights',
initializer=tf.ones([1, 1, 1, 1]))
tf.get_variable('Conv/biases', initializer=tf.zeros([1]))
tf.get_variable_scope().reuse_variables()
y1 = slim.separable_conv2d(x, 1, [3, 3], depth_multiplier=1,
stride=1, scope='Conv')
y1_expected = tf.to_float([[14, 28, 43, 26],
[28, 48, 66, 37],
[43, 66, 84, 46],
[26, 37, 46, 22]])
y1_expected = tf.reshape(y1_expected, [1, n, n, 1])
y2 = resnet_utils.subsample(y1, 2)
y2_expected = tf.to_float([[14, 43],
[43, 84]])
y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1])
y3 = xception.separable_conv2d_same(x, 1, 3, depth_multiplier=1,
regularize_depthwise=True,
stride=2, scope='Conv')
y3_expected = y2_expected
y4 = slim.separable_conv2d(x, 1, [3, 3], depth_multiplier=1,
stride=2, scope='Conv')
y4_expected = tf.to_float([[48, 37],
[37, 22]])
y4_expected = tf.reshape(y4_expected, [1, n2, n2, 1])
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
self.assertAllClose(y1.eval(), y1_expected.eval())
self.assertAllClose(y2.eval(), y2_expected.eval())
self.assertAllClose(y3.eval(), y3_expected.eval())
self.assertAllClose(y4.eval(), y4_expected.eval())
示例9: testSeparableConv2DSameWithInputOddSize
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def testSeparableConv2DSameWithInputOddSize(self):
n, n2 = 5, 3
# Input image.
x = create_test_input(1, n, n, 1)
# Convolution kernel.
dw = create_test_input(1, 3, 3, 1)
dw = tf.reshape(dw, [3, 3, 1, 1])
tf.get_variable('Conv/depthwise_weights', initializer=dw)
tf.get_variable('Conv/pointwise_weights',
initializer=tf.ones([1, 1, 1, 1]))
tf.get_variable('Conv/biases', initializer=tf.zeros([1]))
tf.get_variable_scope().reuse_variables()
y1 = slim.separable_conv2d(x, 1, [3, 3], depth_multiplier=1,
stride=1, scope='Conv')
y1_expected = tf.to_float([[14, 28, 43, 58, 34],
[28, 48, 66, 84, 46],
[43, 66, 84, 102, 55],
[58, 84, 102, 120, 64],
[34, 46, 55, 64, 30]])
y1_expected = tf.reshape(y1_expected, [1, n, n, 1])
y2 = resnet_utils.subsample(y1, 2)
y2_expected = tf.to_float([[14, 43, 34],
[43, 84, 55],
[34, 55, 30]])
y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1])
y3 = xception.separable_conv2d_same(x, 1, 3, depth_multiplier=1,
regularize_depthwise=True,
stride=2, scope='Conv')
y3_expected = y2_expected
y4 = slim.separable_conv2d(x, 1, [3, 3], depth_multiplier=1,
stride=2, scope='Conv')
y4_expected = y2_expected
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
self.assertAllClose(y1.eval(), y1_expected.eval())
self.assertAllClose(y2.eval(), y2_expected.eval())
self.assertAllClose(y3.eval(), y3_expected.eval())
self.assertAllClose(y4.eval(), y4_expected.eval())
示例10: bottleneck
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1,
outputs_collections=None, scope=None):
"""Bottleneck residual unit variant with BN before convolutions.
This is the full preactivation residual unit variant proposed in [2]. See
Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
variant which has an extra bottleneck layer.
When putting together two consecutive ResNet blocks that use this unit, one
should use stride = 2 in the last unit of the first block.
Args:
inputs: A tensor of size [batch, height, width, channels].
depth: The depth of the ResNet unit output.
depth_bottleneck: The depth of the bottleneck layers.
stride: The ResNet unit's stride. Determines the amount of downsampling of
the units output compared to its input.
rate: An integer, rate for atrous convolution.
outputs_collections: Collection to add the ResNet unit output.
scope: Optional variable_scope.
Returns:
The ResNet unit's output.
"""
with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride,
normalizer_fn=None, activation_fn=None,
scope='shortcut')
residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1,
scope='conv1')
residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
rate=rate, scope='conv2')
residual = slim.conv2d(residual, depth, [1, 1], stride=1,
normalizer_fn=None, activation_fn=None,
scope='conv3')
output = shortcut + residual
return slim.utils.collect_named_outputs(outputs_collections,
sc.name,
output)
示例11: bottleneck
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1,
outputs_collections=None, scope=None):
"""Bottleneck residual unit variant with BN after convolutions.
This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
its definition. Note that we use here the bottleneck variant which has an
extra bottleneck layer.
When putting together two consecutive ResNet blocks that use this unit, one
should use stride = 2 in the last unit of the first block.
Args:
inputs: A tensor of size [batch, height, width, channels].
depth: The depth of the ResNet unit output.
depth_bottleneck: The depth of the bottleneck layers.
stride: The ResNet unit's stride. Determines the amount of downsampling of
the units output compared to its input.
rate: An integer, rate for atrous convolution.
outputs_collections: Collection to add the ResNet unit output.
scope: Optional variable_scope.
Returns:
The ResNet unit's output.
"""
with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = slim.conv2d(inputs, depth, [1, 1], stride=stride,
activation_fn=None, scope='shortcut')
residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1,
scope='conv1')
residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
rate=rate, scope='conv2')
residual = slim.conv2d(residual, depth, [1, 1], stride=1,
activation_fn=None, scope='conv3')
output = tf.nn.relu(shortcut + residual)
return slim.utils.collect_named_outputs(outputs_collections,
sc.name,
output)
示例12: bottleneck
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def bottleneck(inputs,
depth,
depth_bottleneck,
stride,
unit_rate=1,
rate=1,
outputs_collections=None,
scope=None):
"""Bottleneck residual unit variant with BN after convolutions.
This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
its definition. Note that we use here the bottleneck variant which has an
extra bottleneck layer.
When putting together two consecutive ResNet blocks that use this unit, one
should use stride = 2 in the last unit of the first block.
Args:
inputs: A tensor of size [batch, height, width, channels].
depth: The depth of the ResNet unit output.
depth_bottleneck: The depth of the bottleneck layers.
stride: The ResNet unit's stride. Determines the amount of downsampling of
the units output compared to its input.
unit_rate: An integer, unit rate for atrous convolution.
rate: An integer, rate for atrous convolution.
outputs_collections: Collection to add the ResNet unit output.
scope: Optional variable_scope.
Returns:
The ResNet unit's output.
"""
with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = slim.conv2d(
inputs,
depth,
[1, 1],
stride=stride,
activation_fn=None,
scope='shortcut')
residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1,
scope='conv1')
residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
rate=rate * unit_rate, scope='conv2')
residual = slim.conv2d(residual, depth, [1, 1], stride=1,
activation_fn=None, scope='conv3')
output = tf.nn.relu(shortcut + residual)
return slim.utils.collect_named_outputs(outputs_collections,
sc.name,
output)
示例13: bottleneck
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import subsample [as 别名]
def bottleneck(inputs,
depth,
depth_bottleneck,
stride,
unit_rate=1,
rate=1,
outputs_collections=None,
scope=None):
"""Bottleneck residual unit variant with BN after convolutions.
This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
its definition. Note that we use here the bottleneck variant which has an
extra bottleneck layer.
When putting together two consecutive ResNet blocks that use this unit, one
should use stride = 2 in the last unit of the first block.
Args:
inputs: A tensor of size [batch, height, width, channels].
depth: The depth of the ResNet unit output.
depth_bottleneck: The depth of the bottleneck layers.
stride: The ResNet unit's stride. Determines the amount of downsampling of
the units output compared to its input.
unit_rate: An integer, unit rate for atrous convolution.
rate: An integer, rate for atrous convolution.
outputs_collections: Collection to add the ResNet unit output.
scope: Optional variable_scope.
Returns:
The ResNet unit's output.
"""
with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
if depth == depth_in:
shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
else:
shortcut = slim.conv2d(
inputs,
depth,
[1, 1],
stride=stride,
activation_fn=None,
scope='shortcut')
residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1,
scope='conv1')
residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
rate=rate*unit_rate, scope='conv2')
residual = slim.conv2d(residual, depth, [1, 1], stride=1,
activation_fn=None, scope='conv3')
output = tf.nn.relu(shortcut + residual)
return slim.utils.collect_named_outputs(outputs_collections,
sc.name,
output)