当前位置: 首页>>代码示例>>Python>>正文


Python resnet_utils.stack_blocks_dense方法代码示例

本文整理汇总了Python中tensorflow.contrib.slim.nets.resnet_utils.stack_blocks_dense方法的典型用法代码示例。如果您正苦于以下问题:Python resnet_utils.stack_blocks_dense方法的具体用法?Python resnet_utils.stack_blocks_dense怎么用?Python resnet_utils.stack_blocks_dense使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.slim.nets.resnet_utils的用法示例。


在下文中一共展示了resnet_utils.stack_blocks_dense方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _build_tail

# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import stack_blocks_dense [as 别名]
def _build_tail(self, inputs, is_training=False):
        if not self._use_tail:
            return inputs

        if self._architecture == 'resnet_v1_101':
            train_batch_norm = (
                is_training and self._config.get('train_batch_norm')
            )
            with self._enter_variable_scope():
                weight_decay = (
                    self._config.get('arg_scope', {}).get('weight_decay', 0)
                )
                with tf.variable_scope(self._architecture, reuse=True):
                    resnet_arg_scope = resnet_utils.resnet_arg_scope(
                            batch_norm_epsilon=1e-5,
                            batch_norm_scale=True,
                            weight_decay=weight_decay
                        )
                    with slim.arg_scope(resnet_arg_scope):
                        with slim.arg_scope(
                            [slim.batch_norm], is_training=train_batch_norm
                        ):
                            blocks = [
                                resnet_utils.Block(
                                    'block4',
                                    resnet_v1.bottleneck,
                                    [{
                                        'depth': 2048,
                                        'depth_bottleneck': 512,
                                        'stride': 1
                                    }] * 3
                                )
                            ]
                            proposal_classifier_features = (
                                resnet_utils.stack_blocks_dense(inputs, blocks)
                            )
        else:
            proposal_classifier_features = inputs

        return proposal_classifier_features 
开发者ID:Sargunan,项目名称:Table-Detection-using-Deep-learning,代码行数:42,代码来源:truncated_base_network.py

示例2: _resnet_plain

# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import stack_blocks_dense [as 别名]
def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None):
    """A plain ResNet without extra layers before or after the ResNet blocks."""
    with tf.variable_scope(scope, values=[inputs]):
      with slim.arg_scope([slim.conv2d], outputs_collections='end_points'):
        net = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride)
        end_points = slim.utils.convert_collection_to_dict('end_points')
        return net, end_points 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:9,代码来源:resnet_v2_test.py

示例3: _atrousValues

# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import stack_blocks_dense [as 别名]
def _atrousValues(self, bottleneck):
    """Verify the values of dense feature extraction by atrous convolution.

    Make sure that dense feature extraction by stack_blocks_dense() followed by
    subsampling gives identical results to feature extraction at the nominal
    network output stride using the simple self._stack_blocks_nondense() above.

    Args:
      bottleneck: The bottleneck function.
    """
    blocks = [
        resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
        resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 2)]),
        resnet_utils.Block('block3', bottleneck, [(16, 4, 1), (16, 4, 2)]),
        resnet_utils.Block('block4', bottleneck, [(32, 8, 1), (32, 8, 1)])
    ]
    nominal_stride = 8

    # Test both odd and even input dimensions.
    height = 30
    width = 31
    with slim.arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
      for output_stride in [1, 2, 4, 8, None]:
        with tf.Graph().as_default():
          with self.test_session() as sess:
            tf.set_random_seed(0)
            inputs = create_test_input(1, height, width, 3)
            # Dense feature extraction followed by subsampling.
            output = resnet_utils.stack_blocks_dense(inputs,
                                                     blocks,
                                                     output_stride)
            if output_stride is None:
              factor = 1
            else:
              factor = nominal_stride // output_stride

            output = resnet_utils.subsample(output, factor)
            # Make the two networks use the same weights.
            tf.get_variable_scope().reuse_variables()
            # Feature extraction at the nominal network rate.
            expected = self._stack_blocks_nondense(inputs, blocks)
            sess.run(tf.global_variables_initializer())
            output, expected = sess.run([output, expected])
            self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:46,代码来源:resnet_v2_test.py


注:本文中的tensorflow.contrib.slim.nets.resnet_utils.stack_blocks_dense方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。